

advanced
sound &graphics
for the Dragon computer

including machine code subroutines

keith & steven brain

First published 1983 by:
Sunshine Books (an imprint of Scot Press Ltd.)
12-13 Little Newport Street,
London WC2R JLD

Copyright © Keith and Steven Brain

lSBN O 946408 06 8

All rights reserved. No part of this publication may be reproduced, stored
in ·a fetrieval system, or transmitted in any form or by any means, elec­
tronic, mechanical, photocopying, recording and/or otherwise, without
the prior written permission of the Publishers.

Cover design by Graphic Design Ltd.
Illustration by Stuart Hughes.
Typeset and printed in England by Commercial Colour Press, London E7.

Contents

Page
Introduction 9

1 Sounding Off 11
2 Text and Low Resolution 27
3 High Resolution 37
4 Circles 51

5 DRAWing 67

6 Combining the Graphics Commands 77
7 On-Screen Movement 87
8 Copying the Screen 105

9 Graphic Presentation of Data 131

10 ThreeDimensions 141

11 Rotation ofFigures 147
12 Instant Keyboard Access to Hi-Res

Commands 153
13 GETting andPUTtingHi-ResCharacters 177
14 Working on aGrid 187

15 Animation 195

16 Sound Synthesis 213

17 GraphicMusicEditor 219
18 BeyondBASIC 231

Contents in detail

CHAPTER I

Sounding Off

Play that tune: building up a note sequence, changing tempo, octave and
note length, displaying the tune graphically and adding words to music.
Improve your games with sound effects.

CHAPTER2

Text and Low Resolution

Displaying characters, CLS, graphics characters, using PRINT TAB,
PRINT USING, RESET, POINT and SCREEN commands.

CHAPTER3

High Resolution

Setting up the hi-res screen, selecting the resolution and colours, setting the
PMODE, choosing foreground and background colours, dealing with
individual hi-resolution points.

CHAPTER4

Circles

Circle is a versatile command which can produce many different types of
curved shape including ellipses, arcs and spirals.

CHAPTERS

Drawing

Experimenting with the 15 different ORA W commands to introduce fea­
tures such as scale, colour, angles, move and blank move.

Advanced Sound and Graphics for the Dragon Computer

CHAPTER6
Combining the Graphics Commands

The PIC-MAN demonstrates how to combine most of the hi-res drawing
commands in a single program.

CHAPTER 7
On-Screen Movement

On-screen movement takes many forms. This chapter demonstrates a
number of ways of moving low-res designs and combines them to move a
more complicated picture of a starship around the screen.

CHAPTERS
Copying the Screen

Copying whole graphics pages, storing and recreating displays, super­
imposing designs, selective erasing, storing screens and reproducing hard
copies.

CHAPTER9
Graphic Presentation of Data

Bar charts, line graphs, contour maps and pie charts.

CHAPTER 10
Three Dimensions

Presenting a three-dimensional view of an object is a very effective way of
making it look more solid. How to plot in three dimensions. Experiment to
form a 3-D box, tube and graph.

CHAPTER II
Rotation of Figures

Angled draw commands: drawing at an angle, forming bisected triangles,
rotating triangles and rectangles.

CHAPTER 12
Instant Keyboard Access to Hi-Res Commands

Drawing directly on the screen including single key routines, lines, rub­
outs, circles, ellipses, GET and PUT, changing colours, painting, drawing
with the joystick and labelling diagrams.

Contents in detail

CHAPTER 13

GETting and PUTing Hi-Res Characters

Saving and using ORA W routines: transferring characters between pro­
grams, saving characters as machine code, dimensioning the arrays,
GETting and PUTing characters.

CHAPTER 14

Working on a Grid

A grid system gives a very useful guide when you want to make sure your
figure fits a particular format. Forming the grid, moving around, making a
'real' copy and saving it.

CHAPTER 15

Animation

Runner, Sprinter, Flying High, and Oasis

CHAPTER 16
Sound Synthesis

Some synthesiser features: repeating keyboard sound, changing the
tempo, volume control, changing the octaves, and sound 'envelopes'.

CHAPTER 17

Graphic Music Editor

The editor allows you to enter a piece of music, display it in standard
musical notation on the screen and then play it.

CHAPTER 18

Beyond BASIC

Exploring deeper inside your Dragon: POKEing into your program,
changing the array names, hidden graphics modes, semigraphics, using
machine code subroutines, partial PCLS and scrolling.

Introduction

The main aim of this book is to teach you how to make maximum use of
sound and graphics in your own Dragon 32 programs. The Dragon has
very useful sound and graphics capabilities and the Microsoft Color Basic
employed contains some very powerful commands. However the very
range and versatility of this implementation can be a barrier to the novice
as it can all seem so complicated that he is not really sure where to start. The
book therefore works from first principles, as to be able to develop
impressive programs using these facilities you must understand very
clearly both the basic manipulation of these commands and the best ways
to use each of them. After the straightforward explanations of how to
struggle with sound and grapple with graphics we get down to more
detailed considerations of more complicated problems and the devel­
opment of a series of useful tools and programs. Their value can perhaps
be estimated by the realization that the figures and hi-resolution screen­
copies for this book were created by the programs within it.

The basic format is that a command or an idea is taken and the routines
built up step by step, exploring and comparing alternative possibilities
wherever possible. Wherever relevant copies of the hi-resolution screen
display are included, so that you can see what to expect. Rather than simply
telling you what to do, and not to do, we encourage you to experiment with
different approaches to let you see the results for yourself. As far as possi­
ble retyping of lines is strenuously avoided, but modification of lines is
commonplace. All listings in this book are formatted to 32 columns so that
they appear as you will see them on the screen, except that inverse cha­
racters appear as true lower case. In most cases spaces and brackets have
been used liberally, to make the listings easier to read, but be warned that
some spaces and brackets are essential so do not be tempted to remove
them all.

All the routines have been rigorously tested and the listings have been
checked very thoroughly so we hope that you will not find any bugs. It is a
sad fact of life that most bugs arise as a result of 'tryping mitsakes' by the
user. Semicolons and commas may look very insignificant but their
absence can have very profound effects! If you do have problems with the
listings in this book, or with your own programs, don't forget that the
Dragon has a TRON function which allows you to follow execution of
your programs, and that pressing SHIFT and @ will halt the execution of
the program until you press another key.

Advanced Sound and Graphics for the Dragon Computer

If that doesn't solve the problem remember that variables are not reset
until you RUN or use EDIT, so you can PRINT them out and see if they are
legal values. Syntax errors (?SN ERROR) are usually the result of missing
(or excessive) brackets, quotes or string signs ($), or the result of mis-spelt
words, but they can also result if you remove essential spaces. Function call
errors (?FC ERROR) usually arise because you are trying to use an illegal
value in a function. Type mismatch (?TM ERROR) occurs if you mix up
string and simple variables. The use of lots of strings can result in a out-of­
string space error (?OS ERROR) which is easily cured by CLEARing extra
string space. The maximum length of a string is 255 characters so if you try
to add two long strings together you will get a ?LS ERROR. If you forget to
DIMension an array, the array is too small, or you look for a negative value
you will get a bad subscript error (?BS ERROR). If the program reaches a
NEXT or RETURN without executing the relevant FOR or GOSUB you
will get a ?NF ERROR or ?RG ERROR. Finally if you try to GOTO or
GOSUB to a non-existent line you will get a ?UL error. This may be
because you forgot to put a line in or you may have accidentally deleted a
line.

The mythical dragons were colourful and noisy beasts and we hope that
this book will help you to train your contemporary Welsh Dragon to
display similar characteristics, without burning your fingers or too much
midnight oil.

lO

Keith and Steven Brain
Groeswen, July 1983

CHAPTER 1

Sounding Off

First Sounds
Everyone begins life with simple sounds but over the years their vocabu­
lary builds up so why not learn about computer sound in the same way?
We will start with the SOUND command which is the simplest way of
creating sound on the Dragon. It needs two parameters, pitch and dur.
ation.

SOUND n,n

The first number is the pitch and can be any number between I and 255
inclusive. Pitch 89 is middle C on the piano.

The second number is the duration which can also be between I and 255
inclusive. A value of 16 for the duration is about one second.

For example:

SOIJt·lD 1, 16

will produce a low note for one second and if we change the pitch to a
higher value:

will produce a high note for one second.
In the same way changing the second parameter:

SOUl·lD 1 , 160

will produce a low note for ten seconds and

will produce a high note for ten seconds.
II

Advanced Sound and Graphics for the Dragon Computer

Making such simple sounds is not that exciting so put the SOUND
command inside a FOR ... NEXT loop which will give every tone that can
be accessed by Dragon sound commands in turn in ascending order.

10 FOR tl= 1 TO 255
20 ,;out-m t·L 1
30 t·lE:,n tl

If you reverse the loop a descending series is produced.

10 FOR N=255 TO 1 STEP -1
20 SOUt·lC) t·l, 1
:30 flE>n t·l

The duration can also be varied by the loop. If we now replace the dur­
ation of 1 by N the sounds will get longer and longer.

20 ,;out-m t·L N
At this point you will probably try to stop the awful noise which is being

produced as it seems as if it will go on for ever (255 gives a duration of about
16 seconds!). However you may be surprised to find that the BREAK key
does not seem to work. In fact when any SOUND is being made the CPU is
so busy that it cannot scan the keyboard and therefore the BREAK key will
only work in the small gap between sounds.

If you want to relate duration to the N variable in the loop then you
usually need to divide it down somewhat to get a sensible length. When you
do this you must take care that you do not produce illegal values (less than
I). The simplest solution is to always add I to the calculated value.

20 SOUt·lD N , t·t ·20+ 1
Of course any STEP value can be used in the FOR-NEXT loop.

10 FOR N=255 TO 1 STEP -5
2•3 SOUt·l[:, fL 1
:;:0 NE:�T t·l

An uneven STEP will produce a more interesting SOUND.

10 FOR N=l TO 255 STEP RNDCS)

Even using FOR ... NEXT loops you are restricted to a certain sequence
but you could put the pitch and duration values in a DATA statement
which could be READ back when required.

12

Chap/er l Sounding Off

1 0 C•ATA 1 (L 5 , 39 1 27 1 2:341 22 1 , 561 441
37 1 1 1 1 3:3., 24, 75, 64 , 31 1 5:3, 20., 24, 4:3 ,
65
20 FOR t·l= 1 TO 10
30 READ p ; c:,
40 SOUt!D P, D
50 HE)ff tl

The above program will SOUND an odd assortment of notes and
although you can use this method to play simple tunes a better way is to
PLAY these. The SOUND command is therefore best left for making long
notes or for playing set, related sequences.
Play that tune
The Dragon has a more powerful method of creating sound through the
PLAY command, which has the syntax:

PLAY A$
where A$ is a string up to 255 characters long. It allows you to define a
whole string of notes and also gives you more control over the way these are
played.

The easiest way to define which NOTEs to PLAY is to use the letters A-G
to indicate the notes A-G. These are arranged in a set sequence (or scale for
the musically minded). The scale of C is:

C D E F G A B

Compare this with the musical stave as shown in Figure 1.1.
Figure 1.1 Notes on the stave

1f 6
C

if a
D E F G

if 8

FI B
To PLAY the scale of C you can type this as a direct command:

PLAY " C: ., C•_; E ., F ., G ., A ., 8 "

Note that the semicolons are optional and they are ignored when the
string is PLA Yed. If you leave them out you will hear no difference.

F'LAV II CDEFGAB 11

13

Ad11anced Sound and Graphics for I.he Dragon Gomputer

In general we tend to leave out the semicolons as they take up space, but
it is sometimes useful to put some in as they can make sequences easier to
read.

(Although it is also possible to define the notes by the numbers I to 12
this can get very confusing so forget that idea for the moment).

[f you have the sheet music for a tune you can copy the notes into a
string, but a number of other factors must also be taken into consideration.
To illustrate the various parameters which must be taken into account let's
look at entering the tune of a well known Christmas carol. The notes are as
follows:
1 0 PLA\'" FFCFGCAGABAGFFEDEFGAEDCC
CBABAGAFGEDCFFEFGFCAGABAGABAGFEF
BAGFF"

If you RUN and are very observant you might just recognise that the
computer is trying valiantly to PLAY 'O come all ye faithful', but is
somewhat flat! To correct this we need to indicate which notes must be
flattened. Both flats and sharps are indicated by adding another character
after the note. To FLATten notes you add a ' -' after the letter for the
note, and to SHARPen a note you add either a ' + ' or a ' #' after the letter.
The same tune with the appropriate notes flattened is now:
10 PLA'l"FFCFGCAGAB-AGFFEDEFGAEDC
CC8ABAGAFGE[,CFFEFGFCAGA8-AGAE:-AG
FEFB-AGFF"

The computer may catch you out if you add sharps and flats to notes at
random, as it is cleverer than you and refuses to recognise B # or C - as
they are not part of the 12 tone musical scale.

Even when you RUN this modified version you will notice that there is
still something wrong. For a start the tune should change octave, at certain
points, into a higher group of the notes A-G. Figure 1.2 shows two octaves
on a stave. To change octave you use:

On
where n is a number from 1-5. The default value is 2. For example:

PLAY "CDEFGAE:"

is different to
F'LAY "O3CDEFGAB"

as the second scale is eight notes (an octave) higher.

14

Chapter I Sounding Off

Figure 1.2 Two Octaves
!O C T A lJ E 2/

6 Q i!i
t' D E

IF a "
F G A

ia

8

IOCIAOe 3)
8 If

C D E F

Q O Q

G A B

When you change the octave parameter the new octave will be used until
you make another change, so you must remember to set it back where
necessary. The amended tune is now:
1 0 PLAY" 02FFCFGCAGAB-AGFFE[:oEFGAE
c,CC0:3C028A8AGAFGE[:oCFFEFGFCAGA8-A
GAB-AGFEFB·-AGFF"

The 02 at the start is not strictly necessary in this case, as octave 2 is used
by default. But it is a good idea to include it as otherwise complications can
arise when you end the string in a different octave and then repeat the
sequence. Enter these lines temporarily and notice the difference between
the first time the string is played and the repeats.
1 00 PLAY" CC•EFGAB0:3CC>EFl�A8"
1 1 0 GOTO 1 1 0

The first time through 02 is used for the first scale and 03 for the
second, but 03 is then used for both scales on repeats. To repeat the first
sequence every time add 02 to the front or back of the string.

1 00 PLAY" 02C[>EFGA80:3CDEFGA8"

or

100 PLAY" CC•EFGAB0:3CDEFGA802"

15

Advanced Sound and Graphics for the Dragon Computer

Meanwhile our carol is still not quite right as some of the notes are
shorter than they should be, and some are too long. The Note Length
Parameter (L) will solve this.

Ln
where n is any number from 1-255 and the default value is 4. As the
number increases the length of the note decreases. L l is a whole note, L2 a
half note, L4 a quarter note etc. If you want to get intermediate values you
can 'dot' the note. Adding a full stop after the number will make the value
half as long again.

e.g. L2.
will be t note + t note = ¾ note.

The tune with the corrected note lengths is shown below.
10 PLAY"O2FL2FL4CFL2GCL4AGAB-L2R
L4GFL2FL4EDEFGRL2EL4DL8CL2CO3CO2
L4BRL2BRL4GRFGL4ELE:DL4CFFEFGL2FL
4CRGAB-L2RL4GRB-RGFL2EL4FE:-L2RL4
GL8FL2F"

Finally we can speed things up a bit by changing the Tempo parameter
(T).

Tn

where n is a number from 1 -255.
Note length sets the length of time each note is played for relative to the

other notes, but Tempo alters the rate at which all the notes are played by
the same proportion.

The default value for T is 2 so alter it to 5 and note that although the
string is now played faster the note lengths are still in proportion.

10 PLAY"O2T5FL2FL4CFL2GCL4RGRB-L
2AL4GFL2FL4EDEFGAL2EL4[,L8CL2CO3C
O2L4BRL2BAL4GAFGL4ELE:[,L4CFFEFGL2
FL4CRGAB-L2AL4GRB-RGFL2EL4FE:-L2A
L4GL8FL2F"

We have already seen that we can loop around a string to repeat the tune,
but what about a pause for breath at the end of each verse? The syntax of

16

Chapter J Sounding Off

Pause is like N and T but it just waits for the specified time (1-255) without
making any sound. If we add PLAY a Pause before repeating we will create
a gap between the verses.
20 PLAY II P50 II

30 GOTO 10

I f we have different groups of the congregation singing different verses
perhaps we should alter the volume of each repeat. Of course you can
change the volume by twiddling with your TV set but you can also let your
Dragon control the volume, by using the Volume (V) parameter. The
Volume command only differs from the other parameters in that it takes
values from I to 31, instead of from 1-255, so it's no good trying to drown
next door's stereo with a very high value. The default value is "Vl5" (half
volume).

If we add

:30 PLA'y' 1
1 v:::: 1 "

40 GOTO 1 0

the first time the Volume will be half (V = 15) and on repeats the Volume
will be full (V = 31).

If you want to repeat a particular musical sequence or set of commands it
can be useful to define these as substrings which can then be eXecuted from
the PLAY command with "X". The syntax is:
10 PLA'l 11 >::A$,i 11

where A$ is a valid musical string and the semi-colon is ESSENTIAL. You
can execute and re-execute different phrases to make a whole tune. For
example the tune for one verse of 'O come all ye faithful' could be defined
as a string and then executed at three different Volumes and Tempos.
10 A$= "02FL2FL4CFL2GCL4AGA8-L2AL
4GFL2FL4EDEFGAL2EL40L8CL2CO:?C02L
48AL28AL4GAFGL4EL80L4CFFEFGL2FL4
CAGA8-L2AL4GA8-AGFL2EL4F8-L2AL4G
L8FL2F"
20 PLAV 11 T5V1 5>=:A$.: T4V8t,:A$.; T6V3 1::<A
$ "

Seeing what you are doing
It is possible to display the notes you are PLA Ying if you define these as a
string and not only PLAY this but also PRINT it. If you use only notes then
life is very simple:

17

Ad11anced Sound and Graphics for the Dragon Computer

1 0 A!li=" CC•EFGAB"
20 PLAY A!li
30 PR ! tH A!li

ll would be nicer if you displayed each note as it was played, so let's slice
up the string and PRINT each new note just before it is PLAYed.

20 FOR P= 1 TO LEt·K A$)
30 B!li=MW!li< A!li, P, 1)
40 PR It-ff 8!1i ., , PLAY 8$
50 NE>n P

It is now easier to detect which, if any, of the notes is incorrect.
Of course 'real' strings to be PLAYed tend to be more complicated than

this and, as not all the commands are of the same length, slicing the string
can get more difficult. If we add sharps and flats and values for Volume,
note Length, Tempo and Octave which are less than 10 we can still use only
two positions in the string to define each command and then slice the string
into two character sections. A little care must be taken in the way the cha­
racters are entered, as not all arrangements are acceptable. The rule on slic­
ing is that the last character must NOT be a space, so that if a note is not
sharp or flat it must be preceded by a space.

1 0 A$= " T501F# G AB- E F C "
2 0 FOR P = 1 T O LEH(A$) t;TEP 2
30 8$=MID!li(A$, P , 2)

Even longer commands can be accommodated (no spaces at the end!),
although this tends to be very wasteful as lots of spaces must be inserted to
pad each command out to the length of the longest command.

10 A!li= "V31 T5 01 F# G A B- E
F C "

2 0 FOR P = 1 TO LE�l(A $) STEP 3
30 B!li=M I D°!li(A!li, F' , 3)

and

1 0 A$= " V3 1 T l 00 0 1
B- E F C "

2 0 FOR P = 1 T O LEt·K A $)
30 B!li=M! D!li(A$, P, 4)

18

F# G

:,TEP 4

A

Chapter J Sounding Off

To make it really easy to see what is going on when copying music or
composing your own tunes we have designed a graphic music program
which displays the music just as it appears on paper. This is described in
detail later but don't be tempted to jump straight to it as you should study
the graphics commands first so that you understand how it works.
Words and music
If you think for a moment about how we displayed the commands you will
probably realise that instead of PRINTing the command which was being
PLAYed we could PRINT something else instead, the obvious choice
being the words to the tune. When you are adding the words you need to
put the right syllable on the right note and also make sure that you do not
put PRINT anything for commands which are not actual notes (e.g.
changes in octave or note length). The syllables are put as DATA in lines 1
and 2, padding these out with spaces to give a neat display. We need to
READ this DAT A and print it only if the current command is a note and so
the commands are sorted by INSTR which compares them with X$, a
string containing all the notes used in the tune. When the next slice is not a
note nothing is READ.
1 C>ATAO
LL
M , PHAt-ff

, CO , ME
ME , Atl[)

, 80�:N

RE , H I M

, COME ., ALL , Y E , FAITH ., FU
, .JOY, FULL , AN[> , TRI , U

, 0 , COME ., YE , 0
, YE , TO , BE , TH , LE , HEM, CO
, BE, HOLC> , HHl
, THE , KrnG , OF , A, t·L GELS

., 0 .. COME , LET ., U:3 , AC• .. 0

2 C>ATACOME , LET .. US , AC> , ORE , H I M
, 0 , COME , LET , US , AC,

, ORE , H , I M , CHR I , :3T , THE
, LORD

10 X$= " 8- A 8 C D E F G "
20 CLS
30 A�' = " 02T5 FL2 FL4 C FL2 G CL4
A G A8-L2 AL4 G FL2 FL4 E C• E F
G AL2 EL4 [)L8 CL2 CP4L20:3 C02L4
8 AL2 8 AL4 G A F GL4 EL8 DL4 C
F F E F GL2 FL4 C A G AB-L2 AL4
G AB- A G FL2 EL4 F8-L2 AL4 GL8
FL.2 F 11

4<3 FIJR t·l= 1 TO LEt·l.::A $ > :,TEP 2
50 8$=M ![1$(A$, N ., 2 >
60 X=HISTW L :x:$, 8 $)

19

Advanced Sound and Graphics for the Dragon Computer

70 IF >'.00 THEN READ C$. PR i t-ff C$

:?.0 PLAY 8$
90 NE:•'.T t·l

Sound effects
As well as being of great value for producing music SOUND and PLAY are
also very useful for producing sound effects. Possible sound effects are
many and varied, but very often use complex changes of parameters to
achieve their effects.

These changes may be part of a preset sequence or may be linked to pro­
gram variables. The commonest problems with sound effect generation are
introducing program-linked changes and accidental generation of illegal
parameter values.

SOUND is the easiest command to use as variables can be altered directly
as described before, although the noise it makes is not very inspiring,
unless it is repeated with changing parameters. A pitch of 0 is not allowed
so take care that you cannot fall to that value. A simple way to prevent this
is to always add I to the variable used in the SOUND command. This
routine PRINTs and SOUNDs every pitch from 1 to 255 at random.
1 0 A=255
20 8=Rt-�D(255)
:30 PR I tff (A-B)
40 SOUND C A-8)+ 1 , 1
50 GOTO 20

You can link different SOUNDs to movement of each key if you scan
IN KEY$ and relate the pitch to the ASCII value of the key. As SOUND
needs simple variables you must first convert A$ to A.

1 0 A$= Ull<E'/$ • I F A$=" " THEl-l 1 0
2 0 A=RSC(A$)
30 SOUt-�[) A ., :3
40 GOTO 1 0

The loop back if no key is pressed in line 10 is essential to prevent the
crash which would occur if line 20 tried to take the ASCII value of an empty
string. Differences of I unit in pitch are not easy to detect, so why not
multiply A by a factor to make differences between keys greater. The
biggest factor which will not produce illegal values is 2 as 2* 127 = 254.

PLAY is a more versatile command but introducing variables is a little
more complicated because PLAY acts on a string. Any simple variable to
be used must first be changed to string format with STRS and then added to

20

Chapter I Sounding Off

the letter indicating the parameter to be varied. This will play a scale in a
random octave.
1 0 R:Rt-mo:: 4)
20 PLRY"O " +STR$0:: R :,
:3[:I PLA\' 11 CDEFGA8 11
40 GOTO 1 0

As PLAY acts on a string you can make a simple tune directly on the
keyboard byd PLA Ying the contents of INKEY$.

20 R$: l t-lKEY$
30 F'LR'-.' A$
40 GOTO 1 0

There is no need to check if A $ is empty as PLA Ying an empty string is
allowed. Of course you can only PLAY keys which correspond to notes
without crashing. A simple way to ensure that only legal values are
accepted is to use INSTR to compare the key pressed with another string
(N$) containing a list of the valid keys.
H l N$=" R8CCoEFG"
30 IF lt-lSTP(1 , N$, A$) >0 THEN PLAY

A$

Although Volume, Octave, Tempo and note Length can be altered by
changing the actual values, as described above, it is sometimes convenient
to use an alternative method which automatically steps the values up or
down. To use this automatic method just add one of these SUFFIXES to
the parameter:
+ adds one to the current value

subtracts one from the current value
> multiplies the current value by two
< divides the current value by two

Notice that the first two move slowly in steps of I unit but that the last
two make more drastic changes as they double or halve the current value at
each step. One point to watch with these commands is that it is very easy to
reach illegal values and crash. For example:

1 00 PLRY " V > "
will double the default volume level (15) to almost full audio output (30),
but:

21

Advanced Sound and Graphics/or the Dragon Computer

! >30 PLA'/ "V> "
1 1 0 GOTO 1'J0

will crash as a value of 60 has been calculated for the volume.
lncreasing and decreasing volume is useful for indicating approach or

retreat of something. For example this produces a police siren which gets
louder as it approaches:

20 PLAY 11 L2T4FGV+ 11

30 GOTO 20
As it stands that starts from half volume and eventually crashes when
V> 31. To start from minimum volume define this separately outside the
loop in line 10, and check in line 30 that not more than 30 loops have been
made.

1 0 F"LAY "\/ 1 "
30 L=L+ l , IF L<3 1 THEN 20

If you want the approach to be more dramatic you can replace + with
> , but if you start from VI you must set V to the actual value of 31 for the
fourth repeat as another V> will give 32.

10 PLA'/ " \/ l l2T4FGV>FGV>FGV>FGV>FG
V:3 1FG"

Games programs usually call for lasers, phasers, zaps etc. and these
usually use very short Tempo and/or Length and changes in Octave and
Volume to produce the desired effect. Here are a few examples, but you
can play for hours to produce even more impressive results!

10 PLAY "T255L255CDEFGAB" , GOTO 10

(ver� fast ascend in9 sca le)

10 PLA\'" T255L255CDEFGABAGFEDC" ' G
OTO 1 0

(ascend i n9 a.nd desce.-.,d i n9 sca. l e)

22

Chapter I Sounding Off

10 PLAY " 01 " , FOR t·l=l TO 4 , PLAY" T2
55C[>EFGA80+" , t·lE:•:T tl GOTO 1 O

(i ncrement octave)

1 0 PLA\' " 01 " , FOR t·l=l TO 4 , PLAY " T2
55CC>EFGABO- " , HrnT tl , GOTO 10

10 FOR t·l= l TO 3�) F'LAY " V " +STR$(t·l)
+ " 01 T255DCDCDWC" , HE>,:T t·l

(1 n1:re·ment vo 1 ur111?)

20 FOR t·l=30 TO 1 STEP-1 PLA' !" '-1 " +
STR$(tl)+" 01 T255DCDC[)C[)C" , rlE>n H

Audio
The final sound function that we have not considered so far is AUDIO
ON/OFF which allows you to connect and disconnect an external signal
from the cassette input lead to the TV speaker. Using this you can play any
type of sound track from the recorder. As the Dragon also allows you to
turn the cassette MOTOR ON and OFF this means you can have total con­
trol of the playback. A simple application of this is in a totally unbiased
computer controlled version of 'musical' chairs. If you put a music cassette
in the recorder, press the play button, and RUN then the music will be
turned on for a random length of time.
10 AUD JO OH , MOTOR OH
20 FOR H= 1 TO Rt!D(1 00000)+ 1 (1000 ,
t·lEr:T tl
30 AU()I O OFF , t10TOR OFF
40 GOTO 10

23

Advanced Sound and Graphics for the Dragon Computer

Another use is to provide spoken instructions for a program whilst a
demonstration is running. You need to record your program with CSA VE
and then record your voice track behind it on the tape after a short gap.
This sequence can be included as a program line with suitable prompts.
60000 CSAI/E " na,,,e " , MOTOR Ot·l , FOR H
= 1 TO 5000 , HEXT t1 , 110TOR OFF
600 1 0 CLS , PR I t4T "WHEt1 READ'i TO AD
D 1/0 ICE TRACK " , " PRESS A KEY"
60020 Q$= lt-lKEYS , IF Q$=" " THEH 6•:J
020
60030 MOTOR ot, , PR I tH ., , "RECORD It-lG
" , , "WHEH FINISHED PRESS A KEY "
6•3040 QS= lt1KE'i$, IF 0$= '"' THEM 60
040
60050 MOTOR OFF , PRIMT, ., " RECORC•It-l
G Et·lDED"

You now need to add MOTOR ON:AUDIO ON near the start of your
program, and MOTOR OFF:AUDIO OFF when the track is ended.
10 CLS , PR ! NT"�lELCOME " , ., " [>0 'iOU l·l
At·ff SPOKEM IMSTRUCT! Ot·lS"
20 Q$= I t1KE'i$, IF Q$=" " THEM 20
30 IF 0$< >" '(" THEN 1 00
40 AUD I O IJt·l , MOTOR iJt,
50 CLS ' PR !MT" TO STOP PLA'i'BACK PR
ESS A KE'l 1 1

60 Q$= !Nf::E'l$, IF Q$= " " THEt·l 6',1
1 00 (re·�-t of P ro9rari·1)

A more serious application is to link a spoken track to a learning pro­
gram which tests spelling, vocabulary etc. You can then arrange for a
word to be spoken whose correct spelling or translation must be entered.
You could have a timing check (using the TIMER function) turning the
MOTOR ON and OFF if all the spoken passages were more or less the same
length. A difficulty with this is that the synchronisation of the program and
voice track can go astray as the motor speed can be rather variable. The
alternative is to make the user press a particular key to start and stop the
tape.
1 00 AUD IO Ot-UlOTOR Otl
1 1 0 PRI�ff " PRESS Et-nm TO STOP T
APE 11 , J > 1

1 20 lt-lPUT Q$, AUD I O OFF , MOTOR OFF
1 30 IM PUT " AHS�lER " ; A$
24

(checking routine)

200 GOTO 100

Chapter l Sounding Off

25

CHAPTER 2

Text and Low Resolution

The text screen of the Dragon contains 512 positions in a 32 by 16 matrix
and the low-resolution graphics display gives you 2048 points which can be
controlled individually on a 64 by 32 matrix. These use the same area of
memory (addresses 1024 to 1535) so that text and low-res graphics can
easily be mixed.
Characters
The alphanumeric and print control characters are defined by numbers
from O to 127 and the numbers from 128 to 255 specify the graphics cha­
racters. Only some of these characters can be accessed directly from the key­
board. Some more characters can be selected using the CHR$ function and
this program shows all the characters available using this method.

1 0 CL,;
20 FOR N=0 TO 255
30 PR ! t-H CHR$(t-l) :
40 t·lE:,n t-l

The most important extra characters available using the CHR$ function
are the graphics characters (codes 128 to 255). These consist of eight sets of
16 blocks in which different segments are blacked out. The print control
characters return blanks and they are not displayable.

There are still some more characters which can be displayed, but only if
you directly change the contents of locations in the screen memory, as the
BASIC interpreter rejects these. All the characters available on the Dragon
can be displayed by adding the following lines which POKE the numbers 0
to 255 into screen memory.

50 FOR N=0 TO 255
60 POf::E 1 2:3E1+t·L N
?O NE>iT t�

As location 1280 is equivalent to PRINT position 256 these characters
lie below the first set. If you look closely at the two versions you will see
that there are a number of differences. There is a whole extra line of inverse

27

Advanced Sound and Graphics for the Dragon Computer

symbols and numbers in the POKEd version and even when characters
appear in both sections they are not always in the same place. You can use
the extra inverse characters in your programs as long as you POKE them
into place, and the differences in the order of the characters mean that you
must be careful if you PEEK at the screen to detect what is at a particular
point. Table 2.1 compares the CHR$ and POKE values.
CLS
The text/low-res screen can be cleared to any of nine colours. The CLS
command has the syntax:

CLS n
where n is a number from O to 8.
The codes for the nine colours are:

0- Black
2 - Yellow
4 - Red
6 - Cyan

8 - Orange

I - Green
3 - Blue
5 - Buff
? - Magenta

The default CLS, if no number is added, is green but you should realise
that two green· characters are available which look the same, but have dif­
ferent codes. CHR$(143) is a graphics character and CHR$(96) is a text
space. Although CLS I to CLS 8 fill the screen memory with the appro­
priate coloured graphics character CLS on its own uses CHR$(96) rather
than CHR$(143) which can sometimes cause confusion. To emphasise the
point try entering CLS and CLS I as direct commands and then PRINT
PEEK(1280) to see what the screen is filled with.
Graphics characters
As you have already seen codes 128 to 255 define the coloured graphics
blocks, and there are 16 different characters (Figure 2.1) available in each
colour. These blocks can easily be combined to build up a picture (Figure
2.2).

10 CLS 0
30 F'R IMT CHR$(1 29); CHR$(1 35) ; C
HR$(1 3 1)
40 PR I NT CHR$(1 28) ; CHR$C l33); C
HR$(1 28)
50 PR I NT CHR$(1 28) _; CHR$(1 42); C
HR$(1 38)

28

Chapter 2 Text and Law Resolution

60 PRit-ff CHR$(1 2'3) .' CHR$(1 36) _; C
HR$(1 36)

Figure 2.1 Graphics characters

I � 2 � 3 � 4

� 5 [] 5 � 7 � 8

.a 9 � 1 0 [I � 1 2

11 1 3 i:) 1 4 [a 1 s 0 1 s
+ 127= GREEN
+ 143 = YELLOW
+ 159=BLUE
+ 175 = RED
+ 191 =BUFF
+207= CYAN
+ 223 = MAGENTA
+239=ORANGE
Figure 2.2 Forming a picture from graphics characters

As the sequence of blocks is the same for each colour the colour of a
design can easily be changed by adding multiples of 16 to the codes for aJl

29

Advanced Sound and Graphics for the Dragon Computer

the characters included. The simplest way to do this is to add an increment
variable (I) to each CHR$ number and then change this.

:30 PR HH CHR$(129+ I) ., CHR$(135+
I) ., CHF:$(131+1)
40 PR IMT CHR$(128+ I) ; CHR$(133+
I) ., CHR$(128+1)
5(1 PR ! MT CHR$(128+ I) ·' CHR$(142+
I) ; CHR$(138+1)
60 PR I tH CHR$(128+ I) , CHR!le(136+
I L CHR$(1:36+1)

If you add this loop the program will show the same design in the next
higher colour each time you press a key.
�� FOR N•0 TO 1 12 STEP 16
70 Q!le= INKEY!Je , I F Q$= " " THEN 7(1
8(1 t�En t·l

PRINT @

The command PRINT @ allows you to define the PRINT position for
the next character anywhere on the text screen. It has the syntax:

PRINT @ p, "message"

where p is a number between O and 512.
It can be used to position both text and graphics characters.

PRINT TAB
Although it is not mentioned in the manual a PRINT TAB command is
available which allows you to displace the next PRINT position by a spe­
cified number from the present position. The format is:

PRINT TAB(d);"message"

where d is the displacement from the current PRINT position.

PRINT USING
This command allows you to control precisely the format of output to the
screen, or a printer. It requires you to define the format you desire and then
to give an 'output list' of items to be printed.

PRINT USING format;output list

30

Chapter 2 Text and Low Resolution

There are many different ways of formatting output but in graphics pro­
grams we are only normally concerned with strings. The only relevant
format command is therefore OJo. If you define the maximum length of a
string to be printed as a number of spaces between two OJo signs then any
string longer than this will have the end cut off to fit.
1 0 PRIIH " WHAT I S YOUR NAME?"
20 H lPUT A!f
:30 PR !t-H US I NG " ;; '.� " ; A$

This can be useful where you want to prevent an unexpected value, or an
INPUTed message, from upsetting a carefully planned screen display.
SET

The command SET turns the pixel defined by X and Y coordinates to a
specified colour.

SET(X,Y,Colour)
The low-resolution screen is controlled in such a way that pixels of dif­

ferent colours cannot share the same character space, so that on any one
character space there can only be one foreground colour and a black
background, and in fact a pixel on the low-res screen is really only one
quarter of a graphics character. As a demonstration try this:
1 0 CLS
20 SET< 10, 1 0 ., 2)

The screen is first cleared to green and then you will see that one
character space is now occupied by a black block with a yellow square in the
top left hand corner. If you SET the point to the right, left, up or down to
the same colour then the command works as expected, and the number of
yellow blocks increases.
:30 SET(9 , 1 0 , 2)
40 SET(1 L 1 0 , 2)
50 SET(1 0 J 9J 2)
60 SET(1 0 � 1 1 ., 2)

If you try to SET the point to the left to a different colour (3 = blue) this
works fine:
40 SET(1 0 , 9 , :3)

but if you try to SET the point to the right ofthe first to a different colour
then it doesn't.

31

Advanced Sound and Graphics for the Dragon Computer

Instead of producing alternate yellow and blue quarters this gives a
completely blue top half of a character. The reasons for this are explained
later, but for the moment just accept the fact that you cannot put a dif­
ferent colour on an adjacent pixel unless the boundary between them is a
character boundary. In practice SET must always be used on a black
screen, and you should try to avoid making lines adjacent wherever possi­
ble. These constraints mean that it is usually better to use hi-res for any
detailed graphics work, although low-res still has the advantages of having
nine colours available at once, and immediate access to text.

RESET
RESET is the converse of SET and turns a particular point off. It is used by
specifying only X and Y coordinates, as the background colour in low-res
is always black.

RESET(X,Y)

Notice that it is not possible to produce RESET by putting the colour O in
SET, as the system rejects this.

POINT
POINT looks at a specified pixel and returns the colour code.

POINT(X,Y)

It is mainly used in comparisons in programs to check the state of a
particular point before a decision is made:
100 IF PO INTC X , Y)=6 THEN • • • • • • . • •

If the POINT tested is black then O is returned else if the POINT is
coloured then one of the numbers l to 8 results. However if the POINT
tests a position containing an alphanumeric character the answer is - 1.

SCREEN Command
When the Dragon is turned on the text screen is automatically selected with
black text on a green background, and when a program ends the system
always falls back to this display. The actual definition of this state is
SCREEN 0,0, where the first O indicates low-resolution and the second 0
indicates the first colour set. It is possible to change the colour set in
low-res, so that text appears as red on orange by SCREEN 0,1, but this
state only continues until the screen contents change or the program ends.

32

Chap/er 2 Tex! and Low Resolution

If you want to use this facility specify SCREEN 0, 1 after PRINT and delay
execution of the program.
10 PR I N T " SCREEN 0 , 0"
2,3 0$= rnf<E'/$ • I F 0$= " " THEN 20
30 Pf;: l tH " :3Cf;:EEt·l ,;:1 , 1 "
40 SCREEt·l O , 1
50 0$= 1 t-lkE'/$ · IF 0$= " " THEt·l 50
6•3 GOTO 1 0

Now each time a key is pressed the colour set will change. Only text is
changed and graphics characters appear as normal. The main use of
SCREEN 0, I is to highlight particularly important screen messages.
Table 2.1
TABLE SHOWING THE CHR$ AND POKE CODES FOR THE FIRST
128 CHARACTERS
CHARACTER

@ rnv
.3_

b

d
E·
f
q
h

ro
n
()
p
q
r

t
IJ.

\I

1.,J

CHR$ CODE

97
98

99
WO
1 '3 1
1 02
1 [13
1 04
1 05
1 06

107
1 [1:3
H:19
1 1 0
1 1 1
1 1 2
1 1 :3
1 1 4
1 1 5
1 1 6
1 1 7
1 1 :3
1 1 9

POKE CODE
0
1
2
:3
4
5
6
7
8

9 w
1 1
1 2
1 3
1 4
1 5
1 6
1 7

rn
1 9
20
21
��2

33

Advanced Sound and Graphics/or the Dragon Computer

:x: 12��1 24

s 1 2 1 25

z 1 22 26
[rnv 123 27

rnv 1 24 28
] I t-N 125 29

I N\/ 1 26 30
IN\/ 127 :31

:,PACE HN 32
I HN 33 " I N\/ :34
II I t-l\1 :35
$ I N\/ :36
�--.; l t·N 37

e� rnv :3E:
HI\/ 39
HN 40

) I N\/ 4 1 * I N\/ 42
+ ItN 4:3

I NV 44 - I N\/ 45
I tN 46

/ I N\/ 47
0 I NV 48
1 I N\/ 49
2 I tN 50
3 I N\/ 5 1
4 I NV �-· ··"'-
,J rnv 5:3
6 I N'� 54
7 I N\/ 55
8 I N\1 56
9 I N\/ 57

I NV 58

I NV 59
I N\/ 60
IN\/ 6 1

I N\/ 62
I NV 63

64 64
65 65
66 66

34

C
[)
E
F
G
H
I
.J
I<
L
M
t·l
Cl
p
G!
r.:

T
u
V
,l

z
[

]

[SPRCEBAf<:]

:t.
+

67

69
71.:1
7 1
72
73
74
75
76
77
78
79
80

8 1
:::2
8:3
t:4
:::5
86
87
:38
89
9(1
9 1

92
93
94
95
32
:3:3
:34
::;:5
:36
:37

:39
4[1
4 1
42
43
44
45

Chapter 2 Tex/ and Low Resolulion

t:,(

68
69
70
7 1
72
7:3
74
1' ,.)

76
77
78
79
80
8 1
t::2

84
85

E:8
89
90
9 1

92

94

95
96
97
98
99

WO
1 ') 1
102
1 �"3:3
1 (14
1 05
106
107
108
1 09

35

Advanced Sound and Graphics for the Dragon Co.mputer

46 1 10
/ 47 1 1 1
0 48 1 1 2
1 49 1 1 3
2 50 1 1 4
3 5 1 1 1 5
4 52 1 1 6
5 53 1 1 7
6 54 1 1 8
7 55 1 1 9
8 56 1 20
9 c� _, , 1 2 1

58 1 22
59 1 2:3

60 124
61 1 25
62 1 26
63 1 27

36

CHAPTER 3

High Resolution

Setting up the high-resolution screen
Before you can do any work in high-resolution you must set the system to a
particular hi-res configuration and this means that you must make a
number of decisions.

Resolution
First you must select the resolution (amount of fine detail) needed. Three
different sizes of screen point are available (Figure 3.1) and these are in the
followii1g possible matrix arrangements.

128 horizontal by 96 vertical
128 horizontal by 192 vertical
256 horizontal by 192 vertical

Figure 3.1 Relative sizes of screen points

• P M O D E 0

• P M O D E

- f' M O D E 2

- P M O D E 3

• P H O D E 'I

37

Advanced Sound and Graphics for the Dragon Computer

One screen point in the highest resolution is one quarter the size of one
screen point in the lowest resolution, and half the size of one screen point in
the middle resolution. Notice that in the middle resolution each point is a
horizontall y -elongated rectangle rather than a square.

Colours
The next consideration is the number of colours you want to use. Although
a total of nine colours (well, eight colours plus black) are available o_n the
Dragon you can only use these in hi-resolution in a restricted way. Only
two colours or four colours can be used, and the colour mix is also fixed.
The choice of number of colours is made by selecting one of the PM ODE
commands Oto 4 (Table 3.1). Three two-colour and two four-colour possi­
bilities are provided.

Table 3.1

RESOLUTION AND COLOURS

PMODE HORIZONTAL VERTICAL NUMBER OF
NUMBER POINTS POINTS COLOURS

0 1 28 96 TWO

128 96 FOUP

2 1 --:-0 .:..·�· 192 rno

3 1 28 192 FOUF:

4 256 192 nm

Memory requirements and setting the PM ODE
The amount of memory needed to support the hi-res display depends upon
the PMODE selected, and ultimately on the amount of detail (resolution)
and colour provided. When the Dragon is first switched on the area from

38

Chapter 3 High Resolution

addresses· 1536 to 6143 is automatically reserved for hi-res graphics, but
your actual requirement may be less than this (Table 3.2 and Figure 3.2).
Memory is used in blocks of 1536 bytes, each of which is known as a
'graphics page'. At power-up four pages are reserved, but this can be
increased by up to another four pages. The number of graphics pages reser­
ved can be set by the user with the PCLEAR command. There is no point in
reserving more memory than you need (as it is then unavailable for other
purposes such as program or variable storage) so if you are using relatively
low resolution use PCLEAR n to set-up only the required number of pages.
Table 3.2
MEMORY REQUIREMENTS IN DIFFERENT PMODES

PMODE MEMORY (bytes) MEMORY (pages)

0

2

4

1 5:36 OME

mo

�:072 rno

FOUR

6 1 43 FOUR
Figure 3.2 Arrangement of graphics pages

1 5 2 8

3 0 7 2

i 6 0 8

E: 1 i i

7 8 8 0

8 2 1 6

1 0 7 5 2

1 2 2 8 8

39

Advanced Sound and Graphics for the Dragon Computer

eg for PMODE O use PCLEAR I
On the other hand more than four pages are needed for certain program­

ming techniques (see later) so it may be necessary to PCLEAR a higher
number of pages than four.

The PMODE command has two parameters. The first selects the
PM ODE and the second defines where in memory this PMODE is to be set
up. The most usual position is page 1, but any reserved page can be spe­
cified. For example PMODE O takes up only one page of memory but this
page can be any of the eight available pages. Of course you will get an error
report if you try to use a page you have not reserved.
PM ODE 0, I = set up PMODE O on page I
PMODE 0,8 = set up PMODE O on page 8

Higher PMODEs spread over more than one page but the second
parameter still defines the start page.
PM ODE 2, I = set up PMODE 2 on pages I and 2
PMODE 2,2 = set up PMODE 2 on pages 2 and 3

It is possible to reserve different pages for different purposes at the same
time, and these can also use different PMODEs. For example we could res­
erve five pages and set these aside as follows: a) one page for PMODE 0,
two pages for PMODE 1, and two pages for PMODE 2 (Figure 3.3).

1 >) PCLERR 5 , PMODE >) , 1 , PCLS PMODE
1 , 2 , PCLS , PMODE 2 , 4 , PCLS

Note that a PCLS command has been added after each PMODE
command to ensure that each page is cleared. PCLS works like CLS on the
text screen.
Colour sets and SCREEN
Once you have decided how many colours you need you must decide which
particular colours to use. In each PM ODE two alternative 'colour sets' are
available and these are selected by the SCREEN command (Table 3.3).

The SCREEN command needs two parameters, of which the colour set
is the first. The second parameter tells the system whether to use the text or
hi-res video memory. The number 1 selects hi-res. For example we will
select colour set 0.
30 SCREEt-1 (1, 1

40

0

2

4

Table 3.3
COLOUR SETS

PMODE COLOUR SET 0

b 1 ack /9re�::·n

b1ack/9reen

Chapter 3 High Resolution

COLOUR SETI
b l .ack /buff

bu. ff /c:::i .;1.n/rr1a 9e·nt-3/r::ir,3. n9�2

b l a.ck /bu.ff

b l a.d:/bu.ff

Figure 3.3 Setting different PMODEs on different pages
1 5 8 6

J
P M O D E 0

8 0 7 2
4 6 0 8 P M O D E
6 1 4 4
7 6 9 0 P M O D E 2
8 2 1 6

1 0 7 5 �

1 2 2 8 8

It is important to remember that it is the SCREEN command which
actually switches the video display from one part of memory to another. If
you insert a temporary line 15 GOTO 15 and RUN you will see that nothing
seems to happen. Press BREAK, delete 15 and insert 100 GOTO 100 and
RUN again. The normal text screen will now be replaced by the high-re­
solution screen. This hi-res screen will be displayed until all hi-res
commands have been executed, when SCREEN automatically reverts to
the text video memory (SCREEN 0,0). This happens automatically at the
end of a program, hence the need for line 100 which forms an endless loop.

41

Advanced Sound and Graphics for the Dragon Computer

SCREEN always sets the video display according to the last PMODE
specified. What we are actually seeing now is not page I but pages 4 and 5,
as PMODE 2,4 was the last command. You can confirm that by inserting
another PMODE command as line 20 to set the last page back to 2, when
the screen will change to green.
20 F'MODE 1 , 2

If you change the colour set in line 30 to 1 and RUN again the screen will
appear as buff.
30 SCRErn 1 , 1

Foreground and background colours
The first named colour in Table 3.3 is the background colour and the last
named is the foreground colour. This means that the PCLS will clear the
screen to the first colour, and any graphics command in which a colour is
not specifically defined will automatically use the last colour. If you define
a particular colour in a clear screen command by 'PCLS n' the screen will
clear to that particular colour (n). But it is important to realise that this
effect is only temporary and does not alter the actual foreground and
background colours. If you want to alter foreground and background
colours you must use the COLOR command which has the format:

COLOR(foreground,background)

Thus COLOR(l ,2) will produce green on yellow and COLOR(4,3) red
on blue. These settings will remain valid until they are deliberately altered.
Dealing with individual hi-resolution points
PSET
The simplest hi-resolution graphics command is PSET which turns on a
single specified screen point. The format is:

PSET (X,Y,C)

and to use it you set the three parameters X, Y and C.
The first two are the X (horizontal) and Y (vertical) coordinates, which

define the screen position which you want to alter. Although the number of
individual screen points (resolution) varies with the PMODE that has been
specified the coordinates for these commands always use a 256 by I 92
matrix so that the centre of the screen is always at (128,96). The actual
physical size of the point produced on the screen will of course depend
upon the PMODE selected. As the same coordinates are used in all modes

42

Chapter 3 High Resolution

you should not be surprised to find that using slightly different coordinates
in the lower resolutions may produce the same result. For example in
PM ODE O there is no difference between these four commands, as they all
turn on the top left hand screen point.

PSET(0,0)
PSET(l,0)

PSET (0, 1)
PSET (l,l)

The last parameter is the number of the required colour (which must be a
'permitted' colour, that is a colour in the current set). If a colour is not
specified then the current foreground colour is used. In practice if you
want to use the current colour then the execution is actually quicker if you
do not include. the value for this in the PSET command.

You can see these effects quite clearly if you use these looping routines to
PSET all the screen points in sequence.under different conditions, and use
the internal clock to check the time taken.

First in the highest-resolution (PMODE 4):
1 0 PMODE 4 , 1 • SCREEN 1 , 0 • PCLS
20 T I MER=O
30 FOR Y=0 TO 1 9 1
4 0 FOR X=0 T O 255
50 PSET 0:: :": . • Y)
60 t·lrnT >'.
70 t·lE><T Y
<Jl:J PR i tH " T IME TAKEtl l•JA'.:: " ; T IMER/
50; 1 1SECot�D:3 11

This will take about 237 seconds. If you now change the PMODE in line
10 to O and RUN the program again you will notice that the program seems
to delay at the end of each line. In fact there is no delay and what you are
seeing is the system PSETing the same points it has already PSET! As there
is no value in PSETing the same point twice we might as well put STEP 2 on
the end of lines 30 and 40, and see how much time that saves.
ol:l FOR \'=0 TO 19 1 STEP 2
40 FOR X=0 TO 255 STEP 2

Well, the result of around 60 seconds is much as you should expect when
only one quarter of the work needs to be done.

The extra work involved when a colour parameter is included can be
shown by changing line 50 so that colour I is specified.

50 PSET (>� } 'l ., 1)

43

Advanced Sound and Graphics for the Dragon Computer

The time needed rises steeply to 85 seconds, and the increase due to the
change in defining the colour is actually even higher than it looks (50%), as
19 seconds are taken to complete this series of FOR-NEXT loops when
they are completely empty. The moral should be clear - don't define
parameters unless you have to!

Parameters can be derived with the command using the usual functions
as shown in this demonstration which turns on points at random on the
lowest hi-resolution screen:
1 0 PMODE 0 , l • SCREEN 1 , 0 • PCLS
20 PSET C RND(255 l , RND(19 1 l l
1 0130 GOTO 20

The routine is more interesting if a four-colour mode is selected and the
colour also picked at random.
1 0 PMODE ! , ! • SCREEN 1 , 0 • PCLS
20 P:,;ET (Rt·lC":: 255 l ., Fll[":: 1 9 1) ., PHO(4 > l
H i0>3 GOTO 20

PRESET
The reverse of PSET is PRESET which sets the specified point to the
background colour (that is turns it oft).

If we PSET and PRESET rapidly we will produce a flashing point on the
screen. Add the PRESETing line 60.

60 PPE:3ET (,< , \' l

Notice that there is no need to specify a colour with PRESET as the
background colour is always used. In fact PSET can be made to do exactly
the same job as PRESET if the background colour is used as the third
parameter. This can sometimes be useful in programming, especially when
the point colour to be used is calculated in the program. For example the
routine below also produces a flashing point, but this time we will use the
highest resolution PMODE 4.
10 PMOOE 4, l • SCREEN 1 , 0 · PCLS
50 FOP C= 1 TO O :,TEP-I
60 PSET (>=: . , Y � C)
7t1 HE><T C ., >=: , GOTO 2�1

Notice that we must use a negative step so that colour O (background) is
used last.

44

Chapter 3 High Resolution

PPOINT
The final hi-res command which acts on a single screeff point is PPOINT
which finds the colour of the specified position. To show this working we
will PSET a point at raridom and then check to see which point was PSET
using PPOINT and two FOR NEXT loops to scan the screen.

1 0 F�ODE 0, l • SCREEN 1 , 0 • PCLS
20 X=RND(256)-1 Y=RND(192)-1
:30 PSET (::.:: J V ., 1 >
40 T I MER=0
50 FOR ::<=0 TO 255
60 FOR Y=0 TO 19 1
70 IF PPO INT (X , Y X > l THEN NEXT

80 PR ! tH "POINT " ; '.,; Y ., " SET "
90 PR Hff TI MER/50 ., " ,,ECOt,DS"

(notice that you need to use RND(256) - I to get numbers between O and
255 as RND(255) only gives 1-255).

You will observe that this routine is very slow! For example it takes 75
seconds to find a point PSET at 50,110 and 198 seconds to find a point
PSET at 134,34. Of course we can speed things up rather by only checking I
point in 4 by adding STEP 2 to the loops (as this is PMODE 0). That will
now find a point at 68,156 in 28 seconds but it is still rather a painful
process to examine the whole screen.

one of the main practical uses of PPOINT is collision detection in
games programs. The reason that it is a realistic proposition in such cases is
that here you only select a limited number of positions to check with
PPOINT. For example if you have a yellow target and a red missile and you
check for yellow at the missile coordinates you can detect contact. More
experienced programmers amongst you may realise that you can actually
avoid using PPOINT in this example if you keep a record of both target
and missile coordinates and compare them directly. However this alterna­
tive is not possible where a record of the positions is not kept as variables.

PSET and PRESET are relatively slow and the more rapid and powerful
LINE and CIRCLE commands can often be used instead. However
PSET /PRESET are still important in certain applications, for example in
plotting non-linear data and in producing a cursor to indicate screen posi­
tion (see later).

Lines and boxes
PSET can be used to plot a series of adjacent points to form a horizontal
line across the middle of the screen:

45

Advanced Sound and Graphics for the Dragon Computer

1 0 PMODE 1 , 1 SCREEN 1 , 0 • PCLS

:3t1 C:=:2
40 FOR X=0 TO 255
5�3 PSET (>=: ., Y ., C)
7(1 NE,,:T >•:
1 000 GOTO 2��1

If we add this PRESET routine then our line will next be 'undrawn' from
the start.
80 FOR T=l TO 1 000 • NEXT T
90 FOR X=0 TO 255
1 (10 PRC3ET O :< ., 'i J
l l fl t!E>:T >•:

On the other hand we could 'undraw' it from the other end with a
decrementing FOR.NEXT loop.
90 FOR X=255 TO 0 STEP - 1

Or make it dotted by only PRESETing certain points. We must remem·
her, however, that in PMODE 1 points are set in pairs and we therefore
need to use STEP 4.
90 FOR X=255 TO 0 STEP -4

If you want to use PSET to draw a line which is neither horizontal nor
vertical then some calculations will be needed. To draw from O,Oto 100,100
for example, is no problem as it is obvious that both X and Y must step by
one for each point. However, even if you want to draw to a less regular
point, it is still easy to calculate the appropriate step size by dividing the
distance to be moved on the Y axis (YE· YS) by the distance to be moved on
the X axis (XE-XS).
10 PMODE4 , l • SCREEN 1 , 0 PCLS
20 :x:::;:=:l3 , :=<E= 10[�
:30 \'8=0 : 'r'E= 1 [H3
40 Y J =C YE-YS J/(XE-XS J
30 FOR X=�3 TO XE
40 p,,ET(>•: ., 'i J
50 '/:::::\'+'r'I
6(1 HE>•:T :,-: ! 0•1 GOTO ! Oi3

46

Chapter 3 High Resolution

Although you can use PSET in this way to draw straight lines it is
actually much easier to use the LINE command. This is a very versatile
command which only requires that you define the start and end points of
the line in X,Y screen coordinates,and specify foreground or background
colour with PSET or PRESET.

LINE(Xl,Yl)-(X2,Y2),PSET
will draw a line from X 1, YI to X2, Y2 in the foreground colour and

LINE(Xl,Yl)-(X2,Y2),PRESET
will draw a line between the same coordinates in the background colour -
that is it will actually erase the line.

Although the looping PSET routine described above works it is rather
slow. A major advantage of using LINE is that the best fit between the path
of the chosen line and the available screen points is automatically used
without any user involvement, so that the routine is reduced to:

10 PMOC•E4 , 1 • ,,CREEt, 1 , 0 PCL,:;
2•J LI flE< 0 , 0)-,: 100, 1130) , PSET
100 GOTO 100

This reduces the time required by a factor of about twenty from 0.86 sees
to 0.04 sees. In practice this means that LINEs appear virtually instan.
taneously.

LINE is often used to connect a whole series of points to form graphs, or
other complex figures. The points may be calculated in the program or
stored in a DATA statement. In this example the DATA is READ into
arrays which are then used in the LINE command. In general the LINE is
drawn from the last point (X(N-1),Y(N-I)) to the next point (X(N),Y(N))
although a special arrangement must be made for the first line, where there
is no last point. As Q is set to O in line 60 and reset to 1 in line 90 the first
LINE will in fact be of zero length and drawn at X(N), Y(N).
10 PMODE4, 1 · ,,CREEtH ; i.) PCLS
2f:J D I M >::(6) ., "((6)
:,:1) FOR t·l= 1 TD 6
40 READ :X:(t4), Y(N)
50 flE>:T t·l
60 l)::::[1
70 FOF.: t·�:::: 1 TO 6
�� LINE(X(N-Q) , Y(N-Q)-(X(N) , 'l(N
), p,,ET

90 Q=!

47

Advanced Sound and Graphics for the Dragon Computer

1 oo t·JE>n t·l
1 10 DATA 1 , 1 , 10 , 10 , 255, 14, 190 , 6
0 ., 12 , E:0 , 45, l ei)

If you want to draw a LINE in a colour other than the current
background or foreground you must first redefine these parameters with
the COLOR command. In this example start and end X and Y coordinates
and the foreground colour (C) are all chosen at random, and then CO LOR
is used to ensure that the line is drawn in the chosen colour.

10 PMODE3, 1 • SCREEN 1 , 0 • PCLS
21) FOR fl= 1 TO 20
:3�3 :�� 1 :::PMD(256)- 1 : \' 1 :::pt-,J[)(192)-· 1
40 ?{2=F.:t·�Ci(256)- 1 = 'r' �:'.=RMC1(1 92)-· 1
50 C=RtJD,: :3)+ 1
61) COLOR C ., 1
70 L I ��E(;-;:1 , 'l1)-(>=:2 ., Y2) , PSET
1 00 NEXT N
1 10 GOTO 1 1 171

The LINE command can also easily be used to produce rectangular
boxes by adding the suffix B and specifying the coordinates of the top left
hand corner and the bottom right-hand corner.

LINE(Xl,Y l)-(X2,Y2) ,PSET,B

If we merely add this suffix to line 70 of the last program we will generate
different coloured boxes instead of simply sloping lines.

7�3 L I ��E(;:.:: 1 , 'l 1 >-(�<2 ., 'l�:'.) J F'SET .. 8
As usual PRESET will erase the box.
There are two ways of filling in the area contained within the box. The

simplest method is to use the suffix BF (for box filled) which automatically
fills the box with the foreground colour.

70 L I NE(X 1 , '/1)-(X2, Y2), PSET ., BF

This will always fill the box with the same colour as that used for the
outline. If you want the outline and contents to differ you can draw a filled
box slightly smaller than required and then draw an empty box around this
in a different colour. Notice that 2 must be added to or subtracted from the
X coordinates as this is PMODE 3 and points are set in pairs.

48

Chapter 3 High Resolution

50 C=Rt-lD-'. 2)+ 1
70 L I NE(X 1 +2) Y 1+ 1)-(X2-2) Y2-1) , P
SET , BF
80 COLOP 4, 1
90 L i t·�E(?:: 1 ., 'l 1)-(�<2 ., Y2) .. P:3ET > 8

PAINTing
An alternative method of filling the box is to use the PAINT command

which will fill any specified area with any permitted colour. The start coor­
dinates must be specified, followed by the colour to be used for PAINTing.
and the final parameter is the 'border' colour which tells the system when
to stop PAINTing.

For example:

PAINT(I28,96),4,2

means start at, the screen centre (128,96) and turn all points to colour 4
(red) until you reach points which are colour 2 (yellow), or if there is now­
here left to move then stop.

70 L l t-lE(X 1 , Y 1 l-(X2 , Y2) , �SET , 8F
80 PR! t-lT(X 1+2 , Y 1+ 1 l , 4 , 2

A comparison of the speed of producing a filled box at (50,50)-(150-150)
by each method shows that LINE . . . BF is more than twice as fast as
PAINT (0.8 sees as against 1 . 7), but against this must be set the greater ease
of specifying the PAINT colour.and the fact that it will fill irregular areas
as easily as boxes. For example try:

1 0 PMODE3., 1 , SCF:EEt-11 ., ,3 PCLS
20 L l t-lE(10 , 1 0 l-(20 , 20 l , PSET
:30 L i t4E(8�J > 20)-(9�5., 60)> P:3ET
40 L I ME(95> 60)-(25> 9'J) ., PSET
50 L HlE(25 ., 9tl)-(1':1 ., 10 l ., PSET
60 PR ! t-lT(1 2 , 1 2 l , 2 , 4

Any point within the chosen area can be used as the start position,
although a start point near a corner gives a smoother effect as otherwise
filling does not always seem to proceed in a logical fashion.

A couple of problems often crop up when using PAINT:

49

Advanced Sound and Graphics for the Dragon Computer

I) Nothing happens
Remember that if the start point is already set to the border colour then the
command will end as soon as it starts. Thus this command will have no
effect:
60 PAINT(12 , 1 2) , 2 , 1

2) Paint leaks into unwanted places
a) Remember that this paint is very corrosive and will easily leak

through any minute 'pinhole' in the border. Make this very small modifi­
cation to line 50 and watch the disastrous consequences. Once started
PAINTing cannot be stopped, even the BREAK key having no effect.
50 L INE(25, 90)-(H'.I , 9) ., PSET

This potential problem can sometimes be turn�d to advantage if you
want to PAINT a series of adjacent independent areas the same colour; if
you can deliberately form some leakage points in strategic places.

1 0 PMODE3 , 1 • SCREEN 1 , 0 • PCLS
20 L l t�E(-10 , 10)-(100, 40), PSET , e
40 L INE(30, 40)-(80 , 80) , PSET , 8
�0 PAINTC 1 2 , 12) , 2 , 4

This program will produce two adjacent boxes but only the top one will be
PAINTed. To PAINT both at once we must provide a leakage point.
50 PSET(40, 40., :3)

b) Remember that you can only specify one border colour so that
PAINT cannot be used to fill an area which is bordered by different
colours. If the COLOR is changed between forming the two boxes the
outlines will differ in colour (first box red and second blue).
30 COLO�: 3 ., 1

If you now try to PAINT these everything except three walls of the first
box will be turned yellow.

so

CHAPTER 4

Circles

CIRCLE is a very versatile command which can be used to produce many
different types of curved shape. In its simplest form it needs only three
parameters X, Y and R:

CIRCLE (X, Y),R
X and Y are the screen coordinates of the centre of the circle, and R is the

radius in screen points (on a 256 by 192 matrix).
A stepped FOR-NEXT loop can be used to produce a series of concentric

circles (Figure 4.1) of increasing radius.
20 PMODE 4, 1 , :3CREEts 1 , 0 , PCLS
40 FOR R=O TO 90 STEP 5
50 C I RCLE (1 28 ., 96) ., R
60 HE,:T r;:
200 GOTO 200
Figure 4.1 Concentric circles

51

Advanced Sound and Graphics for the Dragon Computer

If very large CIRCLES are drawn these will fall outside the screen area
and will appear flattened (Figure 4.2). As the number of points on the Y
axis is 192 the largest undistorted circle which can be drawn has a radius of
96 screen points.
Figure 4.2 Circles falling outside screen area

If the STEP in the FOR-NEXT loop is negative the circles will diminish
in size instead.

You might expect that a STEP of l (default) would give you a completely
filled circle, but in practice that does not happen (Figure 4.3) and some
areas are left blank.
40 FOR i;: =0 TO 90

The reasons for these gaps are the approximations which must be made
in fitting the mathematical calculations of the circle circumference to
available screen points. Close examination reveals that no screen circle is
ever completely round but is made up of a combination of short straight
lines. How perfect the circle looks depends on the resolution used. Most of
our examples use PMODEs 3 and 4, but it is worth comparing the display in
the various PMODEs (Figure 4.4).

52

10 CL:3 • IHPUT" F't•10[:•E" ; P
20 PMO[:•E P, 1 • SCREEH 1 , 0 PCLS
40 FOR R=O TO 90 STEP 1 0
�0 C I RCLE (1 28 , 96) , R
60 flEi:T �:
70 I $= HWE'l'$ I F I $= " " THEM 71) EL
:;E W

Figure 4.3 'Filled' circles

Chapter 4 Circles

If nothing else is specified then the current foreground colour will be
used to draw the circle, but particular colours can also be defined by the
fourth parameter C.

CIRCLE (X, Y),R,C

This is often used to selectively erase CIRCLES by drawing them in the
background colour.

20 PMODE 4 , ! • SCREEN 1 , 0 • PCLS
30 FOR C=l TO O STEP - I
40 FOR R = 0 T O 9 0 STEP 1 0
5 0 C I RCLE (1 28 , 96) , R ! C
60 t·lE>-:T R
70 t·lD•:T C
2�10 GOTO 2lHJ

53

Advanced Sound and Graphics for the Dragon Computer

Figure 4.4 Display in different PMODEs (from top 0,2,4)

As it stands this will draw green circles of increasing radius and then
black circles of increasing radius (Figure 4.5) finally leaving a blank screen.

If you move the position of the FOR C NEXT C loop inside the
radius loop you will produce flashing circles. Delete lines 30 and 70 and
rewrite them as 45 and 55.
40 FO�'. R=0 TO 9(t :3TEP 1 (1
45 FOR C=l TO 0 STEP-!
50 C I RCLE (1 28 , 96) , R , C
55 t·JEXT C
60 HEXT R

54

Chapter 4 Circles

Figure 4.S Erasing circles

Or you could reverse the STEP and erase the circles from the outside in.

:30 C= l
40 FOR R=0 TO �H) STEP 1 (1
50 C I RCLE (1 28, 96), R , C
60 HE:�T R
70 C=0
80 FOR R=90 TO 0 STEP - 1 0
::<lel C I RCLE (1 2 8 , 9 6) , R ., C
1£10 ME>sT ,:

Colour can be chosen at random (Figure 4.6):

20 F�ODE 3 , l • SCREEH l , 0 • PCLS
40 FOR R=0 TO 90 :3TEP 5
50 C I RCLE (1 28 , 96) , R ., RMD(4)
60 t·lE:•n R
200 GOTO 200

Or it may be calculated in some way. For example we could relate the
colour to the circle radius (always remembering that the result must be a
valid colour).

40 FOR R=20 TO 80 STEP 5
50 C I RCLE (128, 96) , R , R,·'20

55

Advanced Sound and Graphics for the Dragon Computer

Figure 4.6 Coloured circles

Ellipses
Although the command is called CIRCLE it is just as easy to use it to draw
ellipses, by changing the next parameter, HW, the height/width ratio.

CIRCLE (X,Y),R,C,HW

The height/width ratio is simply the height of the 'circle' divided by its
width (Figure 4. 7). For a real circle the value is I. If the design is short in
relation to its width HW will be less than I, and if it is tall HW will be
greater than 1.
Figure 4. 7 H/W ratio of ellipse

T
H E I GHT

J
f---- 1-H 0TH ----'>

When changing any of these later parameters you must always take care
to include also all the earlier parameters, or chaos will reign. You do not
have to put actual numbers but you must at least include the commas which
indicate where parameters start and end.

56

Chapter 4 Circles

CIRCLE (128,96)90, 1,0.5
or CIRCLE (128,96),90.,0.5

In all these examples we have written non-integer numbers in full for
clarity, but in practice they can be abbreviated as the leading zero is not
essential.

A series of concentric ellipses with the same HW can be produced as
easily as circles (Figure 4.8).

20 Pf'lODE 4 ., 1 , SCREEN 1 , 0 • PCLS
40 FO�: R=1 0 TO 90 STEP 1 0
5 0 C I RCLE (128, 96) , R , 1 , 0 . 5
60 t�rnT R
200 GOTO 200

Figure 4.8 Concentric ellipses

If the radius is kept constant but HW varied from 0 to I a series of
flattened ellipses of equal diameter are formed (Figure 4.9).

41) FOR Hl•=0 TO 1 STEP 0 . 1
50 C IRCLE (1 28, 96), 90, 1 , HW
60 NEXT HW

If HW is increased further vertically distortion occurs. Figure 4.10
shows the next ten ellipses from HW 1 to 2 in 0.1 steps. Although HW can
be any value up to 255 large values are not used as they simply give vertical
lines.

The HW ratio of a normal television set is 4/3 and the screen display is
256 by 192 so that the largest ellipse which can be accommodated has a
radius of 128 and a HW ratio of 0.75 (Figure 4.11). This type of design in
the screen corners could form a nice 'vignette' setting for your 'golden
oldies'.

57

Advanced Sound and Graphics for the Dragon Computer

40 FOR R= 1 25 TO lf:0 ,,TEP 3
50 CIRCLE (128 ., 96) ., R ., 1 , •J . 75
60 t·lEXT R

Figure 4.9 Changing H/W ratio from O to 1

Figure 4.10 Changing H/W ratio from 1 to 2

58

rf
>---<c���

� • .·--·-·c·--_-.• --:_ : .. :_'._-.·:· .···.·-·-�-.'._-_;_:_: .• ;1;_:_:_:_:_I_
�&;,-.·<:--. . ·: ---- - ; - . ;;.)

Chapter 4 Circles

Figure 4.11 Vignette effect

Arcs
So far we have always drawn complete circles, but we can also draw limited
parts (ARCs) of circles (and ellipses). The last two possible parameters
define the start (S) and end (E) of the circle.

CIRCLE (X, Y),R,C,HW ,S,E
CIRCLE always draws in a clockwise direction from the three o'clock

position. The 3 o'clock position is defined as O and points on the circum­
ference are increasing values between O and 1.

If we start at 0.5 and end at 1 the top half of a circle is formed (Figure
4.12).

4>:J FOR R= rn TO 90 STEP 1 0
5 0 C I RCLE (1 28, 96) , R , 1 , 1 , 0. 5 , 1
60 t�D(.T R

A start of 0.5 and end of 0. 75 gives the top left quadrant (Figure 4.13)
and similarly S = 0. 75 and E = I gives the top right quadrant (Figure 4.14).

50 C I RCLE (1 28, 96) , R , 1 , 1 ., ,3 , 5 ., 0 . 7
5

59

Advanced Sound and Graphics for the Dragon Computer

Figure 4.12 Semi-circle
---------.-, __ _

,.,/,- .. ,:��::-:===----�-� �-.
,/ ,.... ---

·
- '"-·---......

//::>:::,:·>:::>-:::;���=;��-:::�:_::·\, ·· ::,:,,::.::<:, i,::, \
,
1 ,i / / ,1 / / / ,r\ \ \ 'i, i,

1
,, \ 1, \

Figure 4.13 Top left quadrant
..... --

Figure 4.14 Top right quadrant
---·----....... --------.

Smaller differences between S and E will draw smaller segments and
these can start and end at any point (Figure 4.15). Partial ellipses can also
be drawn in the same way.

You can draw an undistorted arc on the screen even if the full circle from
which it comes would be so large that it would overlap the screen, provided
that the centre of the circle is a valid screen p0int (Figure 4.16).
40 FOR R=2i) TO 240 STEP 20
50 CI RCLE (0 , 0) , R , 1 , 0 . 75 , 0 , 0 . 25
6[1 t·!E:•n �:

60

Chapter 4 Circles

Figure 4.15 Segment

Figure 4.16 Arcs of circle with centre just on screen

If you want to draw more than one segment of a circle you can change the
start point S with a FOR·NEXT loop and express the. end (E) as S plus the
desired width of the segment (Figure 4.17).

45 FOR S=0 TO 1 STEP . 2
50 C I RCLE (1 28 , 96 i , R ., 1 ., L S, S+0. 0

55 NE>::T S

The first segment will be drawn from O to 0.05, the second from 0.2 to
0.25, the third from 0.4 to0.45, the fourth from 0.6to 0.65, the fifth from
0.8 to 0.85.

61

Advanced Sound and Graphics for the Dragon Computer

Figure 4.17 Five segments

./
... .,..-··

,· /., .�--

I / / / // / / / I

In four-colour modes a similar technique which incorporates the colour
number into the calculation can be used to produce different coloured
segments (Figure 4.18). The colour number must be divided down to give a
su'itable value.

20 PMO[)E :3 ·' 1 , srnEEt·1 1 , 0 ' PCLS 1
40 FOR R=l 0 TO 90
45 FOR 8=0 TO 1 STEP 0 . 2
4 6 FOR C=2 T O 4 STEP 2
50 C I RCLE < 128) 96) ., R ., C) 1 ., S+C/4) S
+C/4+0. 1
54 t!EXT C
55 NE><T S
60 tJE>'.T R

200 GOTO 2(i•3

As far as the start and end of the arcs are concerned the innermost loop
gives values of 2/4=0.5 or 4/4 = I and the middle loop steps by 0.2. Pairs
of arcs are drawn by the innermost loop. The first arc is drawn in colour 2
from 0.5 to 0.6 and the second in colour 4 from I to 1 . 1 etc., (Table 4.1).
Note that yellow segments all start from odd numbered points and red
segments from even and that if the value is greater than I then the 1 has no
effect.

62

Chapter 4 Circles

Figure 4. 18 Coloured segments

Table 4.1

COLOURING SEGMENTS OF CIRCLES

Segment s C/4 S + C/4 S+ C/4 + 0. l

� e- 1 1 01.,_1 0 0 . 5 0. 5 0 . 6

2 red 0 1 . ,3 1 . 0 1 . 1

:3 � E· l l oi.,J fj. 2 0 . 5 0 .-7 0 . 8

4 re·d 0 . ::: 1 . [1 1 . 2 1 . ::,

� ·> � e l l oi.,J 0 . 4 0. 5 0 . 9 1 . 0

6 red 0 . 4 1 . [1 1 . 4 1 . 5

7 � e· l l o�, 0 . 6 0 . 5 1 . 1 1 . 2

8 re-d <:l . 6 1 . 0 1 . 6 1 . 7 et.c

63

Advanced Sound and Graphics for the Dragon Computer

Spirals
Spirals can also be constructed from small arcs if suitable increments in the
diameter are included (Figure 4.19).

2£1 PMODE 4 ., 1 :,CREEH 1 , 0 · PCLE:
40 FOR R• 10 TO 90
45 FOR S•0 TO 1 STEP 0 . 05
50 C I RCLE (1 28, 96) , R , 1 , 1 , S , S+0 . 05
54 t·l•tH!
55 �-�E::<T E
60 NE:•·:T P
2(H.3 GOTO 200

Figure 4.19 Spiral

··

__ ... -�---------·------
__ .,,.,.-·

,· ,,
•""_,.

•r __ ,
__...

______ '"-••-
..

.,_.

/
----�--­.--·

\ ,
_____ .._,. __ ... _

r,, ;
""- .._,J"

-. ..,_ ... ___ ��
··-.... ______ . ..,.-__ ... ---··

_,..l

-.. ___ ...,.... ____ --·-· .
A couple of minor changes to the parameters can have major effects on

the result (Figure 4.20).

50 C IRCLE (128 , 96 l , R , 1 , 0 . 4 , S , S+0 . 4

Finally a demonstration that judicious juggling with quite simple pro­
grams can have quite startling effects. Look at Figure 4.21 and see how
simply it is built up into a 'flying saucer' from a simple ellipse.
10 ST•0 . 1 • F I• 1 . 5
20 Pt1O[,E 4 , 1 Sc:f;:EEH 1 ., 0 • PCLS
30 FOR R=20 TO 90 :::TEP 5

64

40 FOR Hfl�ST TO F I STEP 0. 1
50 CI RCLE (1 28, 96) , R , 1 , HW
60 t·lE:�T Hl•l
70 F I =F I->3 . :3
:?,,:J t·lE:x:T R

Figure 4.20 Elliptical Spiral

Figure 4.21 Flying saucer

Chapter 4 Circles

65

CHAPTER S

DRAWing

DRAW must be one of the most versatile graphics features available in
BASIC, and both its syntax and applications are many and varied. DRAW
(like PLAY) always acts on a string and you may find it a little daunting at
first as there are no less than fifteen different DRAW commands (Table
5.1). However these can be divided up into three main groups according to
whether they cause m< vement, a change in mode, or have other actions.

To be able to see all the DRAW commands in action we must first set up
a hi-res screen display. (Enter line 20 blindly for the moment and forget it
until later!)
10 PMODE4 , 1 SCREEN l , 0 �:LS
2D [:,PAll " :,A:3 "
l (1(1(1 CUTO 1 (100

Although nothing can be seen on the screen an invisible cursor is now
positioned at the screen· centre (coordinates 128,96), and this becomes
apparent if a DRAW command is now added.

A short line will now appear pointing Up from the centre of the screen,
and if the string is modified to "URDL" (Up, Right, Down, Left) a small
square will be formed (Figure 5.1).

30 [>F:AI," UF:[>L"

Figure 5.1 Square

D
Note that each new line is drawn from the point where the last line ended,

so that the square is offset towards the top right of the screen. Semicolons
between these commands are optional, and are usually left out to save
space in the string. If a number follows one of these letters it defines how

67

Advanced Sound and Graphics for the Dragon Colnputer

Table 5.1

DRAW COMMANDS
MOVEMENT

68

vert i c., l

U uP (0 de9re·e·s)
D dot.Jn (1 80 de·9rees)

hor i z•:..nt.a 1

L left (270 de9rees)
R r· i 9ht (360 de9rees)

di a9onal

E at 45 de9rees
F .a, t 135 de9rees
G at 225 de·9rees
H at 3 1 5 de9rees

absolute

t1 dr.a.w l i ·ne to sPec i f i ed
coordinates

Bt1 bl ank ff10ve (n·,ove
t.o r,ei.,J coord i r,.,. te·s
w i thout dr.3.1a i ·n9)

MOC-E

A cha·n9e an9 Le
C chan9e color
S chan9e sca le

OTHER

N no uPdate of l ast dr.a.w
coordinates

X execute a substr i r,9

Chapter 5 DRA Wing

many times that particular command is to be repeated, thus U4 will draw a
line twice as long as U2 and four times as long as U. If we double the U and
D commands in the string we will now produce a vertically-elongated rec­
tangle instead of a square (Figure 5.2).

3>3 C.•F:Al-l " U2F:C>2L "

Figure 5.2 Rectangle

D
E,F,G and H work in exactly the same way but give the four possible 45

degree diagonal positions. Any combination of these commands can be
constructed to form any type of design. For example this string draws a
letter A. (Figure 5.3).

31:1 Dl<:Rl,l " IJ5EF:2FD5U:3L4"

Figure 5.3 'Drawn' character

R
It is not necessary for the string to be actually defined immediately after

the word ORA W as this will also act on existing strings.
30 R$�" U5EF:2F[o51J3L4"
40 [:,F:R,l A$

Scale
Now to reveal the secret of line 20which used the very useful scaling feature
to effectively multiply the whole of the string by a factor. If no scale is
specified then the factor is 1 and U, for example, will draw a line one screen
point long. On the other hand, as we called for a scale of 48 in line 20, U
actually drew a line 48 points long.

69

Advanced Sound and Graphics/or the Dragon Computer

As usual points are set in different ways according to the resolution
(PMODE) selected, We have selected PMODE 4 but you should also look
at the effect of using lower resolution two and four�colour modes, and
remember that the system may not distinguish two coordinates as different
points in the lower modes.

Scale can be altered within a program, provided that you remember that
DRAW only acts on strings and not simple variables. To include a simple
variable you must first convert it to a string with the STR$ function. To
demonstrate this run this routine which will produce a series of boxes
which increase in size. (Figure 5.4).

20 FOR S•4 TO 56 STEP S
30 E>PAl·J " ,3 "+:3TP$(,,)

40 Dl<:AW URDL"

�30 t-�E::-,:T :3

Figure 5.4 Scaled boxes

The maximum value for S is 62 so any further increase in size must be
made by adding numbers after the actual motion commands (remembering
that these are multiplied by S to produce a cumulative effect). All of our
boxes started from the same point, as they also ended at the same point, but
if you replace line 40 with the string for the letter R disaster will strike. The
first problem is that the drawing does not end at the start position, whilst
the second problem is that the letters reach the top of the screen and
become distorted (Figure 5.5). These difficulties can be solved by adding
'D3' to the end of the string, so that drawing now ends at the start point,
which also incidentally makes enough room for the larger letters.
Figure 5.5 Distortion caused by letter moving up screen each time

70

Chapter 5 DRA Wing

The strings which are used for DRAW can be added just like any other
strings so lines 30 and 40 could be combined into one:
:30 DR Al� II ::1 1 1 +�::;TR$(::;)-t· 11 U5EF:2FD5U3L
4[;:3 1 1

Colour
So far we have only used a two colour mode but now let's change to
PMODE3 to see the operation of the colour command C which works in a
similar way to S.
10 PMCOE3 , 1 • SCPEEN 1 , 0 PCLS
:,:0 FOP C= 1 TO 4
30 [:,PAW' C " +'::'TR$(C:) + " :3241J'jEP:::FC,?;u
3L40 3 "
4':l A$�Hn:E', '$ IF A$� " " THrn 40
50 tlE>:T C
6(1 GOTO 20

Now each time a key is pressed the letter will be redrawn in a different
colour. As colour I is the background colour this means that sometimes the
letter is erased. The default colour is the current foreground, and once a
colour is specified in this way it will be used until it is changed again.
Angle
The final command in the mode group is ANGLE which allows you to
change the direction of movement in every following command in 90
degree steps, producing rotation of the design. The steps are defined by the
numbers O to 3 where O is vertical, I is 90 degrees, 2 is 180 degrees and 3 is
270 degrees (Figure 5.6)
20 FOP A=O TO 3
30 DF'.Afi " A" +STR>I\ A)+ " :,:24U'.5EF::2FD'.AI
3L4[i3 "
50 tlE:-<T A

Figure 5.6 Angle numbers

2

71

Advanced Sound and Graphics for the Dragon Computer

The letter wiU now be drawn in all four possible directions (Figure S.7).
A point to watch once again is that the defined angle will be used for every
subsequent ORA W command until it is changed.

Figure S.7 Changing angle

No-update
Normally each new ORA W command starts from the last point drawn but
it is sometimes useful to be able to draw a number of lines from the same
point, so a N (no-update) command is also available. If you put the letter N
before any other command then the 'cursor' position will not be changed
during that move. This command is applied to each command in this
routine to produce a star which radiates from a central point (Figure S.8)

20 DRAIJ " S48NUNEt·lRt·lFt·mt·lGtlLHH"
30 GOTO :30

Figure S.8 Star produced by no-update

*
It is also useful in producing branching structures when used selectively

(Figure 5.9)

20 [:•RAil " R20t!D 1 5R 1 5tlE> 1 >)R 10HD5 "

Figure S.9 Selet::tive use of no-update

72

Chapter 5 DRA Wing

Move and Blank Move
In addition to the movement commands discussed so far we also have M
(move) and BM (blank move) which are rather different in that they specify
actual new coordinates rather than just direction and distance. The only
difference between M and BM is that M draws a line to the new coordinates
but BM just moves the cursor there without drawing. Until now we have
been content to start all our drawing from the default screen centre posi·
tion, but this can easily be altered by adding BM x,y to the front of our
string. The coordinates x and y may be defined in either absolute or relative
terms. If numbers alone are included they are taken to be absolute. Thus
BM20,20 will move the drawing to the top left of the screen (Figure 5.10)

20 DRAl� " E:M20 ., 2•3R20t-l[) ! 5F: 1 5tm 1 O R 1 0
t�05 1 1

Figure S.10 Blank move to 20,20

To indicate a relative move you must put a + or - before the number,
when the calculation will be made relative to the current position. Now
BM + 20, + 20 will move the drawing towards the bottom right of the
screen from the centre (Figure 5.11). The rule to remember is that up and
left are always negative.

73

Advanced Sound and Graphics for the Dragon Computer

20 D�:Al·J " E'i'1+20 ., +2FiF'.20t·K• 1 'c,P 1 '5H[:o 1 OR
1 tlHD�5 "

Figure S.11 Relative blank move to +20, + 20

The move command M itself is mainly used to draw relatively long lines
to predefined points (rather like LINE). It is possible to put variables in the
M and BM commands, although it is a little messy as each variable must be
converted independently to a string and these musi be separated by a
comma. Variable X and Y coordinates are entered hereto form a series of
lines of differing length (Figure 5.12).

20 'l=50
:30 FOR >Mi TO 250 STEP 1 ':1
4t1 C•RAW " t·ll'1 "+ '.HR$(:,,) + " . , " +STR$< \' ::,
50 Y='l'+2
60 t,rnT :,(
70 GOTO 70

74

Chapter 5 DRA Wing

Figure 5.12

Execute substring
The final command is X which calls a substring which has already been
defined elsewhere. The syntax is:

XA$;

and it is important to note that this is the one place where the semicolon is
not optional (even when it is at the end of a line)! The main value of this
command is in complex programs where particular sequences of ORA W
commands are to be used frequently. As a simple demonstration we will
form a short ladder section as AS and then build up longer sections by
adding strings (but remember the final string length cannot be greater than
255). Each string is then executed to give ladders of varying length, with DS
being executed twice to give the longest ladder (Figure 5.13)

1(1 CLEAR ! O(hJ · Pt•10C•E4 ., 1 SCF:EEt·H ., 0
• PCL:3
20 A$= "Ul OC,5F:20D5U10811-20 , -0 "
:30 8$.=A$+A$
40 C$=8$+E:$
50 [:,$=C$+C$
60 [:1RAl� 11 E:M 1 (1 _, 18�J>�A$.: 11
?O DRAW 8116>3 ., 180:,,E:$., "
80 C>PAW"811 1 10 , 1 80��$; "
,,._, DPAW'8tH60, ! eO)<C,$; "
1 >JO WA�J " 8M210 ., 180>:C,$, :•<C,$.'
1 10 GOTO 110

75

Advanced Sound and Graphics for the Dragon C(Jmputer

Figure 5.13

H H

76

CHAPTER 6

Combining the Graphics Commands

A particular design may be built up by a combination of any or all of the
graphics drawing commands described so far and to give a final demon­
stration of how to do this we have enlisted the help of our friend the PIC­
MAN (Figure 6.1). Perhaps we should explain that he is quite unlike his
abbreviated relative PI-MAN in that he is definitely not an automaton and
certainly has no political aspirations (hence his appearance in glorious
black and white), and that unlike PAC-MAN he has no fear of ghosts or an
insatiable appetite for power pills. Instead he has deliberately been con­
structed from a wide assortment of graphics commands so that he demon­
strates how you can combine most of the hi-resolution drawing commands
in a single program.
Figure 6.1 PIC-MAN

We start by setting the PM ODE to 4 so that we have the highest possible
resolution and can therefore add lots of fine detail. SCREEN 1,0 gives us
white on a black background.
1 0 PMODE 4 , l • SCREEN 1 , 0 • PCLS

In its simplest form the CIRCLE command only needs two parameters:
the X and Y screen coordinates of the centre, and the diameter of the circle,
so that will do nicely for a pair of small round eyes (Figure 6.2). Remember
that coordinates are always specified on a 256 x 192 grid, no matter which
PMODE you are using. When planning a design you can use graph paper

77

Advanced Sound and Graphics for the Dragon Compu1er

or fancy plotting sheets, but a trial and error approach on the screen is
often quicker where there is a lot of fine detail to squeeze in. There is no
need to specify anything else as the default values will give you a full circle
in the foreground colour.

40 C ! RCLE(79, 48) , 2
50 C I RCLE(84 , 48) , 2

Figure 6.2 Eyes
-

Heads are not actually round but rather egg-shaped (especially if you are
a micro-maniac) so for that we need to form a vertically-distorted ellipse
with CIRCLE. It is the height/width (HW) ratio which allows you to
include this distortion but note that this must be the FOURTH parameter.
It is very easy to forget that the system can only tell that this is the fourth
item if it can see three other parameters before this, and that therefore you
must now also include the third parameter (colour). Although we have
actually put the number I in to set the colour to white the computer will also
recognise a comma on its own as the default value, so either of the follow­
ing lines has the same effect. In this program we have deliberately included
all the actual values to. make it easier to read. The HW ratio is greater than I
so that distortion is vertical rather than horizontal (Figure 6.3)

or

Figure 6.3 Head

e
A further feature of CIRCLE is the ability to form only certain arcs of

the whole circle, using parameters five and six to set the start and finish.
PIC-MAN is smiling so his mouth is the bottom half of a circle which is
only drawn from 0 (3 o'clock) to 0.5 (9 o'clock) (Figure 6.4).

78

Chapter 6 Combining the Graphics Commands

Figure 6.4 Mouth

The simplest sort of LINE just goes from one point to another, as in the
nose, and PSET rather than PRESET means that white (the foreground
colour) is used (Figure 6.S).

6�3 L I HE(82> 52)-(82 ., 54) ., PSET

Figure 6.S Nose

Qi
\f}

Although his ears may look positively princely they are rather too small
to form with CIRCLE so are simply boxes formed by specifying the top left
and bottom right corners and adding B to the end of the LINE command.
The neck is made the same way (Figure 6.6).

�� L I NE(73 , 46 }-(74 , 49 l , PSET , 8
90 L HlE(9•) , 46 l-(9 1 , 49 l , PSET ., 8

100 L I NE(80 , 6 1 l-(24, 63 l, PSET , 8

Figure 6.6 Ears and neck

Now that we have a neck we can add the round-shouldered look by a
combination of all the previous CIRCLE ideas to give the top half of a
horizontally-distorted ellipse (Figure 6. 7)

1 10 C I F'.CLE(82, 72 l ., 1 8 ., 1 , . 5 ., . 5 ., 1

Figure 6. 7 Shoulders

79

Advanced Sound and Graphics for the Dragon Computer

We could have continued to use LINE to draw the rest of his body but
DRAW is more versatile as a whole series of lines in different directions can
be DRA Wn at the same time. First we make the top half of the body (Figure
6.8).

1 20 [>RAW" Bt-164 , 72D2t<R6U24R2D20R2(1
U20R2D24R6U28 11

Figure 6.8 Arms and trunk

and then the bottom (Figure 6.9).

t:30 DRAW " Bt-172 , 97D30R8U20�:4D20R8U
3�:1 11

Figure 6.9 Legs

Note the use of blank moves (BM) to set the starting position, and make
sure you follow the instructions round to see which way they go. It is best to
try to plan your route carefully so that it is as compact as possible. You
must also always remember that the next DRAW command will normally
start from the last point DRA Wn, even if that was done an hour or more
ago (as long as you don't use RUN). So if things start going haywire in your
programs look back and check what was the last thing DRA Wn!

80

Chapter 6 Combining the Graphics Commands

DRAW can be used to make any sort of design and another place where
it is very useful is in putting text on the high resolution screen. The letters
forming the title PIC-MAN are DRA Wn in this way. (For more details of
this technique see later) (Figure 6.10).
20 C•RAW" Bt-1 1 50 , W0SF.:IJ@3FDGL3BM+8
, +3R2LU6LF:2Bt1+5 , +6HU4ER2FHL2GD4F
R2EBM+2, -2R4BM+2 .. +3U6F2EW6BM+4 ,
+flU5EF:2FD5U3L4Bt1+8, +31J6[)F 4DU6S4"

Figure 6.10 Lettering

P r c- r-1 A r-�

PIC-MAN obviously favours Doc Marten's as his boots are quite
massive top halves of CIRCLEs with thick soles formed by boxes FILLED
with the foreground colour (Figure 6.11).
1 40 C I RCLE(76J 1 32)) 5) L 1) . 5 ., 1
1 50 C I RCLE(88 J 1 32)) 5) 1) 1 ., . 5 ., 1
1 60 L I ME(? !, 1 32)-(8 1 ., 1 34) , PSET ., 8
F
170 L l t�E(83, 1 :32)-(93, 1 :34), p,;ET, 8
F

Figure 6. t t Boots

P I C-,1 A N

81

Advanced Sound and Graphics for the Dragon Computer

to make him look more solid we have PAINTed in his trousers (Figure
6.12). PAINT will fill an area with the first specified colour until it reaches
the second specified colour and the main user difficulties are making sure
you set the right coordinates and that there are no holes through which
PAINT can leak. Try altering the coordinates in line 180 and watch what
happens.

1 e:0 PA i tm 74, 1 ,10 :, .. 1 , 1

Figure 6.12 Painted trousers

P I C - 1'1 A r--l

DRAW always acts on a string but this string can also be defined in
advance as a substring and used repeatedly by means of the X command.
As we have two identical hands to DRAW these have first been defined as
H$. H$ also uses the useful no-update or N parameter. Normally each new
DRAW command continues from where the last line DRA Wn ended, but
if you put N in front of a command then the next line is DRAWn from the
same place as the Current one. Follow the sequence carefully to see how
each finger is formed (his thumbs are out of sight in case you think he is
deformed).

1 90 H$=" tlD5R2t·ff)5R2H[>5F:2t·l[>5 "

To put the hands into the appropriate positions we just need to set the
new screen start position and then execute H$ by sandwiching it between
'X' and '; ' (Figure 6.13),
200 [,RAW" 8M64, 100i:H$., "
2 1 0 DRAW"BM94 , 1 00XH$; "

We are afraid that PIC-MAN is really rather pompous and has taken to
wearing the bow-tie defined in A$. Notice that this is DRAWn from the
centre using some of the diagonal commands (F and G) and that it is delib-

82

Chapter 6 Combining the Graphics Commands

erately asymmetrical. A relative blank move is used to separate the final
short stripe from the rest of the picture (Figure 6.14). This has the
advantage that you do nOt have to calculate the actual position, but only
the displacement from the current position as + and - a number of screen
points. It is not usually essential to start DRAWing a design from the
centre but in this case PlC-MAN wants to prove to you that this is actually
a revolving bow-tie, which grows, so he needs a central point to work from!

220 A$= " E:t-182 ., 69F3U6C61J6F'.::E'r'1+ 1 _. HJ
p·> " :,=4

Figure 6.13 Hands

Figure 6.14 Complete

The scale parameter S sets the size of the string DRA Wn, the angle
parameter A allows you to change the direction of ORA Wing by 90 degree
steps, and the colour parameter C allows you to change the colour of
DRA Wing. You can use a variable to change any of these provided that
you first convert the variable to a string with STR$. All these ideas have
been combined together in this little sequence in which the tie is DRA Wn in
colour I and then colour O (ie drawn and erased), in all possible directions,

83

Advanced Sound and Graphics for the Dragon Computer

and at ten different increasing scales. The sound is included to slow things
down so that the movement can be clearly seen (Figure 6.15)
230 DRAW 11 8 11 +STR$(S)
240 FOR tl=0 TO 3 , DRFIW"fl"+STR$0-D
250 FOR t1= 1 TO 0 STEP- 1 , C,RAW" C " +
STR$(M)+fl!li

260 SOUt�D255 ., 1 , flE:,,:T t1, tl
270 S=S+ 1 , IF S< 10 THEt� 230

Figure 6.1S Tie revolving

P I C - M A N

Of course pride always comes before a fall and that rotating tie looks
vory dangerous, so it is hardly surprising that it eventually explodes.
Explosions are very frequent features of computer programs so this is a
very general routine. A series of expanding concentric CIRCLES are drawn
by using the variable X to set the diameter, and a sound is integrated wth
each expansion of the circle (Figure 6.16). PLAY is used instead of
SOUND as it allows the use of a much shorter duration if tempo (T) and
note-length (L) are set to their highest value (255).

280 FOR X=! TO 59 STEP 2 , c r RCLE(
82 , 69) , X, 1 : PLA�1' II T255L255CD 11 : t·�E>.-:T

X

Once it has passed its peak the explosion dies away as the CIRCLEs are
now drawn in reverse order by STEP-I, so that only PIC-MAN's boots and
a few fragments remain (Figure 6.17). Notice that integration of graphics
and sound is more complete here as X also varies the volume and tempo of
the PLAY command.

290 FOR �:=59 TO 1 STEP-! , C IRCLE(
82, 69) , X, 0 : Plfff 11 L255'./ 11 +ST�:$(IMT<
K'2))+ 11 T 11 +STR$(::-:: :t:4)+ 11 DC 11 : t�E>::T ><

84

Chapter 6 Combining the Graphics Commands

Figure 6.16 Explosion

Figure 6.17 Remains

85

CHAPTER 7

On-Screen Movement

Some type of on-screen movement is a very common requirement in
graphics programs, but it can take many different forms. The simplest type
of movement deals only with a single point which is moved from one posi­
tion to another.

Text screen
The PRINT positions on the text screen are mapped as 16 lines of 32 cha­
racters numbered sequentially from O to 511, and this is taken account of in
this routine which will move a black block (CHR$(128)) in any of four
directions.

Hl CL:; , P=240
20 H$=CHP�j(l :22)
30 CL�.
40 F'P I HT 1? F' , A$.,

�� l !AI�\ I��
1 F a- " " THEt l 60 EL

70 IF 1 =8 OP 1 =2 1 TiiEH P=P-1
80 IF 1 =9 OP 1=93 THEH P=P+l
�u IF 1=94 OP 1 =95 THEN P=P-32
100 IF ! = 10 OP !=91 THEH P=P+32
1 1 0 IF P<O THEM P=f1 EL'.3E IF P>51
,:, THEN P='S 10
I 50 GOTO :,:0

Note that the ASCII codes for both normal and shifted cursor characters
are tested for, and that the limit checks in line 110 prevent you crashing if
you try to leave the screen. The last screen position (511) is not used as
PRINTing here causes automatic screen scroll.

As the routine returns to the CLS in line 30each time, the character in the
old print position is automatically erased. If you want to be more selective
and only erase the character in the last position you need to store the old
position as a new variable (LP) and then reset this point as you move with a
PRINT @LP,B$. A$ and B$ can be set to any of the alphanumeric or

87

Advanced Sound and Graphics for the Dragon Computer

graphic characters. In the example below (CHR$(143)) is used to reset the
old point to green.
10 CLS • P=240 • LP=P
20 A'li=CHR'li(1 28) • 8!1i=CHR'li(1 43)
30 P�: rnT Ii! LP , 8$
50 LP=P

Non-destructive movement
In more complex programs you may wish to move without permanently
altering the screen and you must then keep a record of what lies in the new
print position. You can PEEK into the new position but unfortunately the
PEEK values are not always the same as the ASCII codes. You must
therefore either use a sorting routine to calculate the appropriate ASCII
code or store the PEEK value as a simple variable and then POKE this back
instead of PRINTing a string. (The text screen starts at location 1024, so
that POK.£(1024 + X) is the same as PRINT @ X). So that only one varia­
ble is needed you must reset the old position before you PEEK the new one.
Note that line 30 must now be deleted and that a message has been added to
line 10 so that you see the replacement of the display working. PE must also
be initially set to the value PEEKed in the start position.
10 CLS • P�:nn Ii! 256 , "THI :; r,; A TE
ST " • P=240 • LP=P • PE=PEEk/ 1 024+P)
20 A!li=CHR$(128)
:30 (c.h? l ete·d)
130 POKEC 1 024+LP) , PE
1 40 PE=PEEKC 1 024+P)
1 50 GOTO 40

Text cursor
Where this type of routine is used to move a cursor over text it is usual to
invert the screen display of the character at the cursor position, so that the
character is still visible. As the ASCII codes for lower case (inverse video)
characters are all 32 greater than those for the appropriate upper case
(normal) characters we only need to add 32 to the PEEKed value.
40 PRHlT � P, CH�:$(PE+32) ,

Graphics
Essentially similar routines can be used to deal with individual pixels in
both low and high-resolution graphics. In both cases calculating the moves
is even simpler as the screen is mapped here as X and Y coordinates. In low­
res the screen is 64 (0-63) by 32 (0-31), SET will turn a pixel to any colour
(Cl) and RESET will revert to the background colour (black).

88

Chapter 7 On-Screen Movement

10 CLS0 : X1=32 : Y1 = 1 6 : X2=X1 : Y2=Yl
20 C 1 =4
30 RESET (:>�2) 'l2)
40 SET<)<: 1 , '/1 , C1 l
50 ><2=::< 1 : Y2=Y 1
60 l!li=It-WEY!li , I F ! $= " " THEN 60 EL
SE l =ASC(I $)
70 I F ! =8 OR !=21 THEN)H=X l - 1
8 0 I F ! =9 OR 1=93 THEN X 1 =X1 + 1
'.•lo I F 1=94 O R 1 =95 THEM Y l =Y l - 1
1 00 I F 1 = 1 0 OR ! = 9 1 THEN 'i l =',' 1 + 1
1 1 0 I F X 1 < 0 THEN X 1 =0 ELSE I F X 1

>63 THEN :� 1 =63
1 20 IF 'l 1 (0 THEN 'i 1 =0 ELSE IF Y 1

>31 THEt� Y1=31
1 50 GOTO 30

The hi-res equivalents PSET and PRESET operate in the same way as
SET and RESET but on a 256 by 192 grid.
10 PMODE 3 , 1 , SCREEN 1 , 0 , PCLS , X l=
128 : 'l l =96 : >::2=::-:: 1 : Y2=Y l
30 P�:ESET(>�2, \'2)
40 PSET(K l , Yl , C ! l
1 10 I F K 1 <0 THEN X 1 =0 ELSE I F X l

>255 THEN K 1 =64
1 20 IF 'l 1 < 0 THEt·l '/ 1 =0 ELSE IF 'ii

> 1 92 THEt·l i' 1 =32
1 50 GOTO 30

Unfortunately, although POINT can be used to test the colour of an
individual low-resolution pixel, this value cannot be incorporated into a
SET command, so that the original display can be recreated after
movement, as O (black) is not a valid colour. On the other hand the high­
resolution equivalent PPOJNT value will be a colour which can be used in
PSET to recreate the previous state of the cursor point.
20 C 1 =4 , C2=PPO I NT< X 1 , Y 1)
30 (de l eted)
1 30 PSET(1�2, V2) C2)
1 40 C2=PPO ! t4T(KL 'i i)
1 50 GOTO 40

The cursor will now move non-destructively over the screen, even if the
background colour changes. This can be checked by changing the PCLS in

89

Advanced Sound and Graphics for the Dragon Computer

line 10 to a different colour or, more dramatically, by adding this line to
give a coloured design to move over.

15 C I RCLE(1 2:3 , 96) , l >:'1 , 2 P A itH(12 :?
., 96)) 2 ., 2 C I PCLE(12e ., 96) ., 2 0 , :":'

The only problem now is that the red cursor is invisible when it is on a red
background. This can be solved by a check that the cursor colour (Cl) is
different to the background colour (C2), followed by a change of cursor
colour if appropriate.
1 4 0 C2=PPOINT< X l , Y l > • I F C2<) C l T
HEt·l 40 EL:oE I F C l < :3 THEt·l C I �et +2

ELSE C 1 =Cl --2

Flashing cursor
On a complex screen it may be difficult to see the cursor, so this is often
turned on and off to give a flashing effect. This is simply achieved by modi­
fying the key-check line so that if no key is pressed the cursor is erased and
then redrawn. For example:
60 I $= I t-11'.EY$ • IF I $� " " THEM PRE:oE
T(>•: l , Y I) • GOTO 40 EL:,E I =A�;C(I $)

The rate of flashing can be slowed by inserting a timing loop.
60 I $= IHl<E\'$ IF I 'Ii • " " THEM F'RE:,;E
T(X l , Y l) • FOR T�l TO 1 0 NEXT T GO
TO 40 EL:,;E l=A:3C(1$::.

Controlling movement
If you want to travel faster you can move more than one pixel at each
decision (increment XI and YI by more than 1), although this may or may
not give less precise control. Remember that in PMODE 4 each coordinate
refers to a single screen point, but in lower PMODEs points are set in
groups so that PSETting more than one coordinate can have the same
effect. For example in PMODE O you must increment both XI and YI in
steps of at least 2, and in PMODE 3 you should increment XI in steps twice
the size of those used for YI .

Using INKEY$ for continuous movement can be tedious, as the ROM
keyboard debounce routine requires you repeatedly to lift your finger and
release the key. However this problem can be got around easily by using
this subroutine where you would normally use INKEY$. It waits for a key
to be pressed and then autorepeats until the key is released. PEEK(l35)
gives the ASCII code for the key pressed.

90

Chapter 7 On-Screen Movement

60 Ot-� (F'EEK(:3:37)< 255)+ 1 GOTO 6(1
o.J I =PEEf<(135)

Where joysticks are used to directly control screen position appropriate
scaling of the JOYSTK values is required. For example in low-res the
JOYSTK(l) value for the Y coordinate must be halved to give 0-31.
1 000 :,,: 1 =-JO'lSH::< 0) • \' 1 =.JO'r:,,n:< 1)/2

On the other hand in PMODE 4 JOYSTK(0) must be multiplied by 4 (to
give 0-255) and JOYSTK(l) by 3 to give (0-191).
1 060 X l�JOYSTK(0)t4 Y l=JOYSTK(l)
l:3

Although this scaling for hi-res gives numbers in the appropriate ranges
you must remember that not all the individual points can now be reached,
as movement is being made in steps of 4 and 3.

It is also possible to use a joystick to control direction of movement
rather than absolute position and in this case all points are easily reached.
The actual joystick values are read into temporary variables JO and J 1
which are used to determine direction.

l 1:'.H3�j .J0= ... JOYSTK(�3) : ..Jl =JO'·,-·::;TI<(1)
1 020 I F J0=(20 THEN X l=X l- 1 ELSE
IF J0= }50 THEN X l =X l + l
1 030 I F J 1 =(20 THEN Y l=Y l- 1 ELSE
IF J 1=>50 THEN Y l =Y l+ l

When the lever is central both JO and J 1 will equal 32, so upper and lower
limits of 20 and 50 have been arbitrarily chosen, but the sensitivity
(distance lever must be moved before an effect is produced) can be altered
by varing these limit values. Values close to 32give most rapid response but
it can then be difficult to prevent unwanted movement. As X and Y coordi­
nates are considered separately diagonal movements can be produced. If a
wait status is needed a check for a central position on both axes can be
included.
1 0 1 0 IF .J0>20 AND J0'.5•3 AND .Jl >2
0 Ats[' .J 1 < 50 THEM 1 ,:,00

Joystick position can also be used to control rate of movement if the size
of step is linked to the distance of the lever from the central position. In this
routine three different size steps are provided (1, 2 and 5 units). The most
extreme positions must always be checked for first.

91

Advanced Sound and Graphics far the Dragon Computer

1020 IF J0{ 10 THEN X l =X l -5 ELSE
IF .J!Y 15 THEt, :": 1 =:•O -2 ELSE IF J0
<20 THEtl :� 1 =:� 1 -3 ELSE IF J0>60

THEtl :J. 1=:,,: 1 +5 EL:3E IF .J0>50 THEM
Xl=Xl+2 ELSE IF J0)40 THEN X l =X l
+ 1

Moving more than one point
So far we have only looked at the simplest situation where a single point is
being moved, but often we need to move a series of linked points which
make up a particular design. We will consider the position for low­
resolution first.

Direct setting of points
The simplest way to form your chosen design is to SET the required colour
at each desired screen point, which is defined as X and Y coordinates.
Unless the number of points to be SET is very small these coordinates are
normally stored in DATA statements. This DATA can then be READ and
the corresponding points set.

30 CL:30
4r3 U = l
5 0 FO�: tl= l T O 16 • REf1D :,: , 'r' • :,;ETO:,
Y, C 1 > • t·lEXT N
80 DATA 0 , 0 , 0 , 1 , 0 , 2 , 0, 3 , 1 , 0 , 1 , 1 ,
1 , 2 , 1 , 3 , 2, 0 , 2 , 1 , 2 , 2 , 2 , 3 , 3 , 0 , 3 , 1 ,
3 , 2 , 3 , 3 , 4 , 0 , 4 , 1 , 4 , 2 , 4 , 3

Note that the screen must be cleared to black (CLSO) and if the DAT A is
to be used more than once a RESTORE must be added to the end of line 50.

20 FOR R= l TO 100
50 FOR fl=l TO 16 • READ :•-'. ., Y · SET(:•< .,
Y , C l) • NEXT N • RESTORE
60 NE,<T R

The display will now flash as the points will be SET and the screen
cleared 100 times.

92

Chapter 7 On-Screen Movement

Reading into arrays
A modification of this approach is to READ the DATA into X and Y
ARRAYS and then use the array elements in the SET command.
1 GOSUB 90
50 FOR N=l TO 16 , SET(X(N), Yon, C
1) , NEXT N
90 DIM XC 1 6) , YC 1 6)
100 FOR N=l TO 1 6 , READ X(N) , Y(N)
, f!EXT N , RETURN

At first sight this seems rather complicated, but this method has two
main advantages. The first gain is a small decrease in the time taken to plot
the design on the screen. This can be demonstrated by timing a 100 loop
cycle.
1 0 T IMER=0
70 PR i tH TIMER/50

Comparative timer values are 17 .8 seconds for direct READing and 16.8
seconds using the array method.

One problem with DATA statements is that they can only be read
sequentially and the second, more important, advantage of transferring
the values to an array is that any part of the design can easily be used
independently. This procedure is dealt with in more detail later, i,ut the
general idea can be seen by adding a STEP 2 in line SO so that only alternate
points are SET.
50 FOR N= l TO 16 STEP 2 , SETC X(N)
, Y(N) , C 1) , NEXT N

The 'characters' approach
As you should remember from the earlier explanation of low-res graphics,
there are restrictions on the way points can be SET to different colours and
any pattern of set points can also be represented by certain of the Dragon
graphics characters. Although using this method requires some careful
planning with a jigsaw approach on squared paper to determine the appro­
priate characters it has a number of plus points. Each graphics character is
equivalent to four pixels so that the number of values to be entered is
divided by 4. The graphics characters can be PRINTed, so that there is no
need for a long, complicated, and often error-prone, DATA statement.
'Impossible' combinations of points will be obvious and there is also a
large increase in speed of plotting. The simplest action is to put the cha­
racters directly into the PRINT command.

93

Advanced Sound and Graphics/or the Dragon Computer

50 FOF.: H=0 TO l , PF.: HH t?. 32:tt·l , CHF.:
$(1 43) , CHF.:$(1 43) ; HEXT H

This new line 50 produces the same display as the old line, by means of a
loop which PRINTs two characters on adjacent lines. However it is much
quicker (5.1 seconds) - only about 30% of the time taken to SET each
point individually.

The speed can be increased even more if the design is stored as a string
variable.

1 A$=CHF.:$(1 43)+CHR�\ 143
50 FOR H=>.'I TO 1 , PF:nrr I?. 32:t:H., A$.,

HE>:T H

This minor change has profound effects (3.2 sees) as the time drops to
only 180/o of the original. If you double the number of points to be SET you
will virtually double the time taken (34.1 seconds for direct READing or
30.2 seconds from an array). On the other hand increasing the length of A$
to 10 or even 20 characters has much less effect (3. 7 seconds and 4.2
seconds, respectively).

Where movement of the design is required rapid replotting is usually
necessary, and the logic of the 'characters' rather than the 'SET' approach
should now be obvious! If you require even more speed you can POKE
&HFFD7 ,0 (if your machine can stand this) which will reduce all times by a
further 25%.

Referenced movement
The easiest way to define the screen position of the design is by means of
offsets from the start position. For X and Y mapping we will call these XO
(for X axis offset) and YO (for Y axis offset). To determine the new coordi·
nates we simply add or subtract XO and YO from the current position as
described earlier in the general movement section, and then add these off.
sets to the SETting line.

50 FOF.: H=l TO 1 6 , SETC X(H l+XO , YC H
l+'-/0 , C l H·lE:x:T t·l

Where graphics characters are used we are back to the sequential 0-511
arrangement so we must allow for steps of 32 on the Y axis, either in the
key.-check line or in the PRINT @ line.

94

Chapter 7 On-Screen Movement

Modifying limits
Where more than one screen position is to be set at the same time we must
modify our limits to ensure that there is room for the whole of the pattern.
If we use the top left-hand corner of our area as the reference point we will
need to subtract the width of the design from the X axis limit and the depth
from the Y axis limit. For example a 4 pixel by 4 pixel design on the low-res
screen cannot be moved beyond X, Y coordinates of (63-4),(3 1-4). If you
look back to the cursor routine you will see that as a general procedure the
size could be defined as XS and YS and then these values subtracted from
the absolute limits.
1 0 CLS121 : >0:: 1 ::::32 : V l =: 1 6 : X2==Xl : 'l2==Y1 :
>'.S=4 , '/:,=4

1 1 0 I F X 1 (0 THEN X 1=0 ELSE IF X l
'> (6:3-><S) THEt� ::< 1 == (6:3->�S)

1 20 I F Y 1 <0 THEtJ 'l 1 =0 ELSE I F 'il
X 31 -YS) THEN Y 1 =(3 1-YS)

Starship
Let's put all these principles of moving a low-res design together in a pro­
gram which moves a more complicated picture of a starship (Figure 7.1)
around the screen, instead of an anonymous box.
Figure 7 .1 Starship

The first idea is to map out the design on the low-res grid, put all the pixel
X and Y coordinates into DATA statements, read these into arrays, and
index the SET coordinates to cursor key movement. The transfer of DATA
to the arrays is put in a subroutine at the end of the program out of the way.
On return from this initialisation process all the points are SET by line 30
and the program waits for a key press. The cursor key routine used here
PEEKs at certain reserved memory locations to detect which key is pressed
and has the advantage over INKEY$ of autorepeating.

As soon as a key is pressed (PEEK{337)< 255) each point is RESET in
turn in line 50. Note that this must be done BEFORE the screen position is
updated.

95

Advanced Sound and Graphics for the Dragon Computer

When specifying limits you must not forget to allow for the actual width
and height of the picture. If you check the DATA the lowest X co-ordinate
is 5 and the highest 29, and similarly the limits of the Y coordinates are 1
and 6. The overall size of the picture is therefore 25 by 6 pixels. The design
is SET from the top left point which starts at (5,1), rather than the more
obvious start coordinates of 0,0, so the right-hand X limit must be (X axis
length (64) - picture width (25)-original distance from left (5)) = 34, the
bottom Y limit (Y axis length (32) - picture height (6) - original distance
from top (I)) = 25, and the left-hand X and upper Y limits are (0 - original
distance from left (5)) = - 5 and (0 - original distance from top (I)) =
- I, respectively.
10 GOSUE: 1 000
2f:t CL:;0
30 FOR t·l= 1 TO 55 , SET(:,((t·l)+:<O , \\ tl
)+VO, C) , t·lE:�T M

40 IF PEEK<::337::-=255 THEt·l 4tt
50 FOR ��=1 TO 55 , �'.ESET(:,.::(t-�)+;>::O ., '-(

(t·l)+YO) • ME>(T M
60 I F PEEK(341)=223 THEM YO=Y0-1
70 IF PEEK(:342)=223 THEM YO=YO+ l
80 I F PEEK043)=223 THEt·l XO=X0-1
�t:! IF PEEK<::344)=223 THEt·l :�O=><O+ 1
100 IF ,:0<5 THEN i<:0=5 ELSE IF ,,:o
>:34 THEt·l X0=34
1 1 0 IF VO(l THEM YO= l ELSE IF YO
>25 THEt� 'r'0=25
1 20 GOTO 30
1 000 D I M X(55) , Y(55)
10 l t1 FOF: t�= 1 TO 55 • READ :,:on , Y(M
) , flEi<:T tl , F:ETURtl
5000 DATA 5 , 1 , 6 , 1 , 7 , 1 , 8 , 1 , 9 , 1 , 1 0
, L 1 1 .. 1 ., 1 2 , L 1 3 ., L 1 4 , L 1 0 ., 2 , 1 0 , 3
, 1 0 , 4 , 8 , 5 , 9 , 5 , HL 5 ., 1 1 ., 5 , 1 2 , 5 , 1 3 ,
5 ., 1 4 , 5 , 1 5 , 5 , 1 6 , 5 , 1 7 , 5 , 1 8 , 5 , 1 9 , 5 ,
20, 5 , 2 1 , 5 , 22 , 5 , 23 , 5 , 9 , 6 , 1 0 , 6 , 1 1 ,
6 , 1 2 ., 6 ., 1 3 , 6 ., 1 4 ., 6 , 1 5 , 6 , 1 6 ., 6 ., 1 7 , 6 .,
1 8 , 6 , 1 9 , 6 , 20 , 6 , 2 1 , 6 , 22 , 6
50 1 0 DATA 23, 4 , 1 9 , 3 , 20 , 3 , 2 1 , 3 , 22
, 3, 23 , 3 , 24 , 3 , 25 , 3 , 26) 3) 27 , 3, 28 , 3
, 29 , 3

When you RUN this routine you will find it functions but that it is very
slow, taking about 1.2 seconds for each position update. It looks as if this

96

Chapter 7 On-Screen Movement

starship is just drifting in space as it takes more than 45 seconds to cross the
screen. Obviously something must be done to speed things up, so why not
replace all that RESETting of the SET points in line 50 by a simple CLS0.
Not surprisingly that effectively halves the time per update to 0.6 seconds
as only half the work is left. Although CLS0 will delete any text you have
on the screen remember that both CLS and PRINT are almost instan­
taneous, so that it is quicker to wipe the whole screen and PRINT back any
text you need rather than use RESET.

As this stands the screen is cleared before all the key checks and calcu­
lations, but there would be less flicker if we deleted line 50 and jumped
back to the CLS0in line 20so that the original display was maintained until
the new one was about to be plotted.
120 GOTO 20

To try to speed things up even further we could use PRINT CHR$
instead of SET. A copy of the starship design transferred to the PRINT @
grid is shown in Figure 7 .2. The individual PRINT @ positions and cha­
racter codes could be treated as DATA and put into arrays just as for the
SET coordinates, and then these printed from the array elements with an
offset. Make sure you include a semi-colon after the PRINT!
30 FOR t·l= l TO 29 , PR ! tff � :�on+:,<O
, CHR!li('r(fl))., , t·lEn t·l
1010 FOR t·l=l TO 29 , REA[• ,:o: t·D , Y< tl
) , tlE:•:T t·l RETIJRt4
1020 DATA 2 , 129, 3 , 131 , 4 , 13 1 , 5 , 13
1 , 6 , 13 1 , 7 , 130 , 37, 138 , 4 1 , 129 , 42 , 1
:3 1 , 43 , 131 , 44 , 13 1 ., 45 , 131 , 46 ., 131 , 6
8) 13 1) 69, 139) 70) 131 > 7 1 , 131 , 72 , 13
1 , 7:�: , 1:�: 1 , 74, 1:3 1 ., 75., 1 :35, 1(10 , 1:32, 1
0 1 . 1*:i , 102 , 140, 103 , 140, 10,1, 140 , l
05, 140, l f:16, 140 , 107 , 136

Figure 7 .2 Starship formed with characters

97

Advanced Sound and Graphics for the Dragon Computer

Although this doubles the speed again (0.3 seconds) it still only looks like
impulse drive as a lot of time is spent recovering the array values during
each update. If you think the speed of movement is more than doubled
remember that each move now takes you twice as far (one character is two
pixels high and two pixels wide). For really high speed warp drive operation
we are going to have to get rid of those arrays and print strings directly.

The design is four character units high so we need four strings (A$-D$).
These are defined in lines 1000-1030, and printed in the correct position
relative to each other by appropriate numbers for the start position in the
PRINT @ commands (0, 35, 66, 98). Notice that B$ has three black cha­
racters (128) included as this is simpler than splitting this string into two.
3£1 PP I tH 1, 0+PO , A$; • PP It-lT i, 35+P
0 , 8 $; • PP I NT i, 66+PO , C$; • PP I NT i,
98+PO ., C,$.;
1 000 A$=CHF: $(1 29)+STP !HG$(4 ., 1 3 1)
+CHR!:li(1 30)
1 0 1 0 8$=CHF:$<: 138 ;,+:3TP ! tiG$(3 , 128 :,
+CHR$(1 29)+STRI NG$(5 , 1 3 1)
1 020 C$=CHP$(1 3 1 i+CHP$(139)+STP I
NGS$(5, 1 3 l l+CHP$(135)
1 030 C,$=CHF:$(1 :32 H:3TVi NG$(6 , 1 40 :,
+CHP$C: 136)
1 040 F:ETUF:t·l

You will find that the update time is now reduced very dramatically to
0.04 seconds, that is 30 times faster than our original program. The cursor
key routine could be altered so that there is only one offset (PO) and this
must then be changed by steps of 32 for vertical movement. If you fit the
ship in the bottom right·hand corner of the screen you will see that the
limiting PRINT @ position is 403.

60 IF PEEf::(341)=223 THEtl PO=P0-3
2
70 I F PEEK(342)=223 THEt·l PO=P0+:3
2
80 IF PEEK(34:3)=22:3 THEtl PO=P0-1
90 IF PEEf::044)=223 THEtl PO=PO+ 1
1 00 IF PO<:<) THEtl P0=0 EL3E I F PO
>403 THE�l F'0=41}:3
1 1 0 GOTO 30

The only problem remaining now is that the ship wraps round if it
reaches the edge of the screen, because the PRINT @ positions are mapped

98

Chapter 7 On-Screen Movement

sequentially rather than as X, Y coordinates. To solve that we need to
analyse the cursor movements in terms of line (L) and row (R) rather than
simply PRINT @ position, and calculate PO as (L•32)+R. There is no
need to leave the check for absolute PRINT position as a value above 403
cannot now be reached asR would be greater than 19and L greaterthan 11.
60 I F PEEK-::341)=223 THEt·l L=L-1
70 IF PEEK-'.:342)=22:? THEt·l L=L + 1
75 I F L<0 THEM L=O EL:3E I F L > l
1 THEM L= l l
80 I F PEEKC 343)=223 THEN R=R - 1
9 0 I F PEEf<(:344)=223 THEtl R=R+ 1
9�5 I F R<0 THEM R=0 ELSE IF R > l
9 THEH R=19
1 0•) PO=(U:32 HR
1 1 0 GOTO 3r3

An easier way to deal with CHR$
As an example of a 'consequences' routine in Dragon Games Master we
gave a design for a Dragon which used a lot of low-res graphics characters
(Figure 7 .3) but required that you typed in the following lines to form the
figure.
4000 CLS0 , PR i flT I!! 4 1 , CHR$(241) ., C
HF:$(243) ., CHR$(243) ., CHR$(1 59) ., CHR
$(24:3); CHR$(24:3) ; CHR$(242); STRi t·�
G$(4) 1 28) ; CHR$(247) _; STR i t�G$(5) 6 1
) ; CHR$(248) .:
40 1 0 PR I NT i 73, CHR$(255) ; STR I NG
$(5 , 6 1) ; CHR$(255) ; CHR$C 242) ; STRI
t·lG$(2 , 1 28) ., CHR$(247) ., CHR$(6 1) ., CH
R$(255) ; CHR$(254) ; STRI NG$(2) 252)
; CHR$(24::!) _;
4020 PR I NT i 106, CHR$(252) iSTR I N
G$(:3 > 255) .; CH�'.$(6 1) .; CHR$(255) . , CHR
$(250); CHF:$(1 28); CHR$(245). CHF:$(
6 1) ; CHR$(255) ; CHR$(254) :
4030 PR I N T � 1 4 1 , CHR$(247) ; CHR$(
61) ., CHR$(254) ., CHR$(1 28) ; CHR$(241
• • . i CHR$(6 1) . , CHR$(255) . , CHR!f:i(254) _;
4040 PF: HH (1 1 72 ., CHF:$(245) ., CHR$(
255) ; STRI NG$(1 4 > 6 1) ; CHR$(255) ; CH
R$(242) ;
4050 PPI MT I!! 2 0 5 , CHR$(25::l) ., STR I M

99

Advanced Sound and Graphics for the Dragon Computer

G$(2 , 255) ; CHR$C 6 1) ; STR I NG$C 1 0 , 25
5) .i CHF.'.$(61) ; CHR$(255) .i CHR$(250) ,:
4060 PF: I tff I>! 2:3::: , CHF:$(24 1) ; CHR$(
61); CHR$(255) .i CHF.:$(254); STR it·�G$(
6 } 1 28) ; CHR$(24 7) ; CHR$(255) .i CHR$(
61) .i CHR$(255) .i CHR$(248) .:
4070 PR lt-H i;> 269, CHR$(241) _; CHR$(
61) ., CHR$(255) ; CHR$(254) .i ::;TRI t-�G$(
6, 1 28) .: CHR$(241) ; CHF.:$(255) .i CHR$(
61) .: CHR$(255) _; CHF.:$(254) _;

Figure 7 .3 Dragon

- = = -"

�-- - � - .
, -i

H--t-t---rH--H-�1.._1 .=.= = = = = = = = = = = = =
••=
II --. =a,

I
As you can see that was a bit tedious, very vulnerable to typing mistakes,

and rather difficult to edit, so we put our minds to finding an easier way of
dealing with long strings of characters.

If you look through the lines above you will see that a total of only 14
different characters are used, s.o we could store their codes as DATA and
then READ those numbers into an array.

10 DATA 24 1 , 243, 1 59 , 242 , 1 28 , 247,
6 1 , 248 , 255 , 254, 252 ., 250 , 245. , 25:3
20 CLEAR 1 000 , [:,j M A(1 4) , cu:0
:30 FOR CH= 1 TO 1 4 , READ A(CH ::" HD'.
T CH

Each element in the array describes one of the characters (Figure 7 .4),
and we can now describe each line of the figure by a string of numbers
instead of having to repeatedly type CHR$(. . .), provided that we have a
decoding routine which can convert our number pattern into CHR$. For
example the first line would now be:

100

Chapter 7 On-&reen Movement

1 1 0 A$= 11 2 2 3 2 2 4 5 5 5 5 6
7 7 7 7 7 8 11 · GOSU8 1 000

Figure 7 .4 Character representation in array

C H R $!2 1 1 I 2 '1 3 1 1 5 9 1 2 '1 2 ! 1 2 8 I
A R R A Y 1 2 3 'I 5
As we have numbers greater than 9 we must enter the low numbers with a

leading space so that we can always slice the string into blocks of two (lines
I()(X}-1010) (Figure 7.S) and then take the VAL of the resulting string
(B$), thus converting it into an actual number. Line l030 then looks in the
array A and prints the character corresponding to the number in the array
element with that subscript. When all of the string has been decoded the
PRINT p0sition is moved to the next line and a RETURN made.

1 000 FOP C=l TO LEtl(A$ l :3TEP 2
1 0 10 8$=MID$(A$, C , 2 l
1 020 B�VAU 8$)
1 030 PP I NT C�RS(A(B l l ,
1'J50 t·JD(T C
1 060 Pf<:rt-n • PETUPti

Figure 7 .S Slicing the string

Lines 120-180 describe the rest of the figure and if you RUN this you
will see the Dragon created, but r.ither slowly (3. 7 seconds). Line 300calls a
subroutine which halts the program until a key is pressed (1070). To make
life simpler at a later stage all the numbers in each A$ start from the same
screen row, even where this means leading blanks must be inserted.
1 20 A$= 11 9 7 7 7 7 7 9 4 5 5 6 7
9 1 0 1 1 1 1 8 " • GOSU8 1000

130 A$= 11 5 1 4 9 9 9 7 9 1 2 513 7 9
1 0 " • GO:3ll8 1 000
140 A$:'1 5 5 5 5 6 7 1 0 5 1 7 9 10

101

Advanced Sound and Graphics for the Dragon Computer

I I GCl :3U8 1 �J0�.:1
150 A$= 11 5 .J 5 1 :3 9 7 ? ? 7 7 7 7
7 7 7 7 7 7 7 9 4 11 : GOSUB 1000

160 A$= 1' 5 5 5 514 9 9 7 9 9 9 9
9 9 9 9 9 9 7 9 1 2 " , GOSUB 1000

170 A$= '' J J 5 5 5 1 7 9 10 5 � 5
5 5 5 6 9 7 9 8 11 : GOSUB 1000

180 A$= 11 5 5 5 5 1 7 9 10 5 5 5 J

5 5 1 9 7 910 11
: GOSUB 1�2n30

:300 GOSUB 1070
1070 IF PEEi<(:3:37 :,,0255 mm 1070
ELSE RETI.Wt·l

If you make a mistake in entering each line it is much simpler to correct,
but that sort of speed of operation is not much use. The next stage is to
make another array (L$) to hold an image of each line of the design once it
is formed. Each new character is added onto the end of L$(n) (line 1040),
and L is incremented to move to the next element of L$ to store each new
line.
2Q CLEAR 100[1 , D I M A(14 l , C• IM L'li(':'
) : CLS0
1040 L'li(L)=L$(L)+CHR$(A(8))
1 060 L=L + 1 , PR HH , 8$= " " F:ETUl<:tl

We can now recreate the figure from the LS array very simply and much
quicker than before. A check reveals that it now takes0.08 seconds which is
only 2% of the earlier figure!
:3 1 0 CLS0
:320 FOR L=0 TO 7 , pR INT Ll(L) · NEX
T L
400 COSUB 1070

If we use a PRINT @ command related to the line number (P•32), rather
than just a PRINT, we can follow our string with a semi-colon and preserve
the black screen. (This was why we made sure we started all the lines in the
same screen row).
4 10 CLS[1
42[1 FOR P=0 TO 7 , PR nn (/(P:t:32) ·' L
'Ii(P) ; , NE�:T P
500 GO SUB 1 ff?O

102

Chapter 7 On-Screen Movement

As it stands we are PRINTing the figure in the top-left corner but we
could easily offset this, by adding another variable (PO}. A value of 200
sets the figure in the bottom right of the screen.

5 1 0 CLS0
52t1 P0==20t1
530 FOR P=0 TO ? • PR I NT i(Pf32 l+P
o, L$(P l ; , pi;:nn CHI<: $< 12e > ., , tiE:,,:T P
540 G0:3U8 1070

The next logical development is to get the figure moving, and this can be
done by simply arranging to change the offset. The change must be
negative as Dragons never go backwards.
54�3 F'O=-=F'0- 1 : GOSUB 1 O?f1 · GOTO 5:?0

Our Dragon will now wend his way up the screen, wrapping round at the
edges, until he eventually crashes with an FC ERROR when the PRINT
position goes negative. To prevent him moving upwards we could loop the
offset from 31 to 0, although he will still wrap round so we now need to
CLS0 at the end of each cycle, which causes the display to flash.
60i;i C0:3U8 107i;i
6W CLSi;i
620 FOR P0=31 TO ij STEP- !
630 FOF: P=0 TO 7 , PR!t-H I(P:t.32)+P
0 , l$(P); , PF'.Jt-lT CHR$(1 28) ; , NE:,T P
640 NEXT PO
650 CL:30
660 GOT0620

Horizontal screen scrolling
It is possible to produce a smooth display which scrolls without wrapping
round if we add some black sections (STRING$(30, 128)) either side of our
Dragon pieces, and only show an incrementing MID$ section of the total
string at a time.

700 FOR L =•3 TO 7 , L$(U=STR It-lG$<3
0 , 128)+l$(L)+STR ING$(30 . , 1 28 > , t-JE:�
T L
7 10 CLS0
730 FOR P=l TO 54 • FOR L=0 TO 7 , p
R INT (e(LJ32 l , M I D$(l$(L :,, P , 30) ; , P
R l t-H CHR$C 128); , NEXT L • NEXT P
740 GOTO 730

103

Advanced Sound and Graphics for the Dragon Computer

Not only does the Dragon move smoothly on and off the screen, but he
never reappears before he has disappeared completely. If you want to be
really clever you can make sections of the screen scroll in opposite
directions at the same time by making another string and modifying the
way the string is sliced, although that inevitably has a time penalty.

720 :>'.$=STF: HlG$(45, 1 2'3)+ " FOLLO,l T
HE DRAGOt·l "+:3TR!t-lG$(1 0 , 1 2'3)
7:30 FOR P=l TO 64 , FOR L=0 TO 7 , p
R I NT � (Ll:32)+96 , t1 ! [)$(l$(L) , P , :30)
., ' P�: ! NT CHR'f(1 2'3) ; , PR !NT �0, M ! [)$
(>�$, 65-P) 30); : PRINT @:384 , M ID$(:>�$
, 65-P ., :30) ; • t·JE:,-,:T L t·lrnT P

Of course this type of horizontal scrolling could be used to produce any
type of design, and is particularly appropriate for large-scale displays and
advertisements.

104

CHAPTER S

Copying the Screen

Now that we have dealt with the commands which allow you to create
graphics on the screen and looked at how we can move these around, let us
consider some other features which all involve making copies of the screen.

PCOPY

The hi-resolution command PCOPY enables you to make instantaneous
copies of whole graphics pages, one at a time. All you need to do is to spe­
cify the source (from) and target (to) pages. For example:

PCOPY 1 T0 2

will make a copy of graphics page 1 on graphics page 2. Remember that as
this command produces a COPY the source page still has its original con­
tents so that you can keep copying the same thing.

In PMODE0 only one graphics page is used for the whole screen display,
so PCOPY can change the entire screen at one time. In the following exam­
ple page I is first displayed and cleared to black. When a key is pressed page
2 is displayed and cleared to black. When a key is pressed page 2 is
displayed and cleared to green. When a key is pressed again page 1 is copied
to page 2 (the page currently being displayed) so that it changed to black.
10 F�ODE 0 , 1 , SCREEN 1 , 0 PCLS
2f1 GCISUB 1 �3t)O
30 PMODE 0 , 2 , scREEN 1 , 0 PCLS1
40 GO:,,uB 1 (1fJ•J
�30 PCOPY 1 TO 2
1::, i_1 GCISUB 1 f100
999 :3TOF'
10130 l$=!Ht<E\'$ IF] $= " " THEt-l WO
0 EL:,E RETUF:tl

Of course you could get the same effect as this example with a simple
PCLS but once you have some actual graphics on the pages the command
becomes more useful, particularly in producing animation. As eight
graphic pages are available, and PMODE O uses only one at a time, we

105

Advanced Sound and Graphics/or the Dragon Computer

could produce seven different alternative screens containing varying sized
circles on pages 2 to 8 (Figure 8.1) and PCOPY them back to the page on
display (1) in rotation.

1 0 PCLEAR 8 PMODE 0 , l • PCLS
20 FOR t-1=2 TO 8
30 PMO[>E 0 , t·I , PCL,,
40 C I RCLE (128, 96) _, t�l 1 0
5 0 t·IE:>'.T H
60 PMOC•E 0, 1 , SCREEt·l L '3
7'3 FOR t-1=2 TO 8
:3'3 PCOP'-/ t·l TO 1
90 t!E>'.T t·l
1 '3'3 GOTO 60

Figure 8.1

() ...,.,.

106

.,,.._,_ _____ _

() ·---...--

8 Copying the Screen Chapter

107

Advanced Sound and Graphics for the Dragon Computer

108

Chapter 8 Copying the Screen

109

Advanced Sound and Graphics/or the Dragon Computer

Notice that there is an initial delay while the program first draws the
series of circles on pages 2 to 8. These circles are not seen until they are
PCOPYed back to P,age 1 as the only SCREEN command follows PM ODE
0, l. The very rapidly changing display almost appears to show all of the
circles on screen at the same time and looks rather like a whirlpool.

(A similar effect to PCOPY can also be produced by changing the page
in the PMODE command followed each time by SCREEN to change the
page currently on display.

60 FOR t·l= 1 TO 8
70 F't'10DE 0, H
:30 ,,CREEt·l 1 ., 0
90 t·lE>,:T H

In higher PMODEs more pages are needed for each screen so each
PCOPY command will only copy part of tl}e screen. This means that you
must use more than one PCOPY command to change the whole screen,
and that a smaller number of different pictures can. be stored. If you
modify the program to use PM ODE 1 you will see that the number of alter­
native •frames' is reduced from seven to three. On the other hand four
colours are available, and the circles can now be drawn in three different
colours.

110

Chapter 8 Copying the Screen

10 PCLEAR 8 PMODE 1 , 1 , PCLS
20 FOR N=:3 TO ? :3TEP 2
:30 F�ODE 1 , N PCLS
40 C I RCLE (1 28, 96) , N* 1 0 , (N/2 J+ 1
50 t,JE:,,,:T t,J
60 PMODE 1 ., 1 , SCREEN 1 , 0
?O FOR t·l=?. TO ? :3TEP 2
80 PCOPY tl TO 1 , PCOPY tHl TO 2
90 tlE:<T t·I
1 00 GOTO 60

tr you find it difficult to notice that the circles are different colours you
can add a timing loop which will slow things down if you press a key.
:35 I$= I t-H<E'-;'$, IF I $:: > " " THEt·I FOR
T=! TO 1 (n)0 , NE:,- ,:T T

It is not necesary to copy the whole screen at the same time and if you
remove the second PCOPY in line 80 only the top half of the screen will
change to produce a cycle of semicircles.
80 PCOPY N TO 1

To make this more obvious change the original PCLS on pages I and 2 to
PCLS3.
1 0 PCLEAR ::: , PMO[:oE 1 , 1 PCL�;:3

When you set up pictures in one mode and then view them in another, or
only copy part of the screen, things can get rather confusing. If you change
line 60 to PMODE 3 you may find it difficult to explain the resulting pie·
ture (Figure 8.2)!
60 PMODE :3, 1 , SCREEN 1 , 0

At the top you have a series of flashing coloured half ·ellipses, below this
a blue band, and in the bottom half of the screen a constant yellow ellipse.
All of this is actually quite logical if you think about it step by step.
PMODE 3 uses four pages and since we started from page I we can see
pages 1 to 4. The blue band is page 2, which was the bottom half of the first
two pages which were turned blue by PCLS3 in line 10. The yellow ellipse at
the bottom was drawn on pages 3 and 4 in PMODE I, and this ellipse, and
those on pages 5 to 8, are being copied back onto page I in the top quarter
of the screen. The circles have been distorted to ellipses as each page is
shortened to half of its height in PMODE I. Copying only part of the
screen can beused to produce a 'window' effect where only certain sections
of the screen are changed.

I I I

Advanced Sound and Graphics for the Dragon Computer

Figure 8.2 View in PMODE 3

c::· _.)
< : :,

() (

(: :)

In conclusion the main things to remember about PCOPY are that i t is
very fast but that it can only change whole pages at a time.
GETting and PUTting
GET and PUT are an extremely valuable complementary pair of
commands which allow you to store individual areas of the display and
then recreate them anywhere on the screen. This is obviously a great asset
when you want to move complex designs. However they are not found in
most versions of BASIC and are often avoided by the novice, as they
appear complex at first sight and their value and operation are not
explained clearly in the Dragon manual.

GET takes an area of the screen display, and stores the status of every
pixel in that area. PUT can then recreate this area anywhere on the screen.
The process is rather like creating a photocopy of the GET area and PUT­
ting it down in different places (note that the original is not affected by the
copying process). The size of the area copied by GET is specified by the
top-left and bottom-right coordinates of the area (Figure 8.3).
Array size
The pixel status information which is copied by GET must be stored in an
array, and of course a suitable size array must first be DIMensioned. The
method for calculating the size of the array which is described in the
Dragon manual is wildly inaccurate and the figures it produces are a gross

112

Chapter 8 Copying the Screen

Figure 8.3 Coordinates for GET

X l J r1

D
X 2, Y 2

overestimate of those necessary. It states that you must declare a two­
dimensional array using the height and the width of the area in pixel units
as the dimensions. Thus for a 50 x 50 pixel area you would need a 2500

element array. Now since each array element takes up five bytes this array
would occupy 12500 bytes of memory. If this was true then the GET and
PUT commands would be of very limited practical use as there would only
be enough room in memory for copies of quite small areas. If you calculate
the array size required to GET the entire screen area of 192 x 256 pixels the
result is 49,152 elements, equivalent to a horrifying quarter of a megabyte
of memory!

The error in the calculation above arises from the fact that it assumes
that the status of each pixel is stored as a number in a separate array
element. Fortunately this is not true and information on more than one
point is actually stored in each array element area. The whole idea of an
array here is really rather confusing and irrelevant as in this case DIMen­
sioning the array is only used by the system to reserve a block of memory at
a particular location. The way this area is then used has no connection with
the normal manipulation of arrays, as each byte is simply filled in
sequence.

The amount of memory really required to store the information depends
on the PMODE in operation, but let's consider the situation in the highest
resolution PMODE (4) first. Here there are only two possible conditions
for each screen point, as it is either on or off. Since on and off can be
indicated by a single bit one byte can store the condition of eight pixels.
Thus, instead of each pixel needing five bytes eight pixels can be stored in
one byte - saving memory by a factor of 40! Our 50 x 50 area now only
needs 313 bytes which is equivalent to a 63 element array, and even the
whole screen can be stored in 1229 elements (6144 bytes). As the bytes res­
erved for the array are simply used in sequence there is no need to use a
multi-dimension array.

The only slight problem with making the division by a factor of 40 in one
step is that you can only use whole bytes and whole array elements and
small errors may therefore arise due to rounding. In addition there is a

1 13

Advanced Sound and Graphics for the Dragon Computer

small overhead in forming the array. With small areas dividing by 40 and
rounding up is always effective, but as the areas get larger some allo­
wances must be made. The simplest way to ensure that you have enough
memory reserved is to divide the area in pixel units by 40 and then add IOOJo
to the calculation for luck. If problems arise, or you want to use the abso­
lute minimum of memory, try RUNning the program with a slightly bigger
or smaller array.

The array size needed for the other PMODEs can be calculated in the
same way. Bear in mind that halving the number of individual pixels will
halve the number of bits needed, but that a four colour mode needs twice
the number of bits to code for pixel colour (Table 8.1).

Let's set up a hi-res screen and DIMension an array of appropriate size
for a 50 x 50 area. The calculated array size was 63 but both the ' + 10%'
and 'trial and error' methods show that 69 elements are needed.

10 PMODE4 , 1 • SCREEN 1 , 0 • PCLS
20 DIM A(69)
1 000 GOTO W00

Table 8.1
CALCULATION OF ARRAY SIZE NEED BY GET

PMODE

0

2

4

GET

P i >ce- 1 s/b� te·

1 6

1 6

8

8

d i v i :::.or (.::1.P P ro><)

1 60

80

40

40

In its simplest form GET only needs to include the top-left and bottom­
right coordinates of the 'source' area and the name of the array to be filled.

GET(X I , YI)-(X2, YI),arrayname

1 00 GETC 0 , 0)-(49 , 49 l , A

1 14

Chapter 8 Copying the Screen

If you RUN this nothing will appear to happen, although a copy of the
top left hand corner of the screen will actually have been made in array A.
An optional feature in GET is the G suffix, which gives storage of full
graphic detail.

GET(X l , Yl)-(X2, Y2),arrayname,graphic detail
Adding this parameter ensures that all variations of the PUT command

(see below) will always work properly, but it does slow things down. The
time taken to GET an area also depends on its size and Table 8.2 gives some
comparative times for different size areas, with and without the G
parameter. As you might expect doubling the size of the area doubles the
time taken, but the increase in time when G is added is a very significant
six-fold. Much of the time G is not essential and the moral is obviously to
leave it out whenever speed is important. The times for GETting the whole
screen in PMODE4are0.6seconds (- G)and4.3 seconds (+ G), which can
be placed in context by comparison to the speed of PCLS and PCOPY
which take 0.1 seconds to change the same area.

So far we have merely been GETting a blank area of screen, so let's make
a solid box in the area so that we see what is happening.

:?,0 L i t·lE(10, 10)-(4(1 ., 40) , P:3ET ., BF

Table 8.2
SPEED OF GET WITH AND WITHOUT FULL GRAPHIC DETAIL
(time in seconds)

are·,J. (P i >�e- l s >

-G 0 . 04 0. l1:?, 0 . 1 4

+G 0 . 24 ,) . 44

PUT

The form of PUT is similar to that for GET in that top-left and bottom­
right coordinates of the 'target' area, plus the name of the array containing
the information to be PUT, are the minimum requirements.

1 15

Advanced Sound and Graphics for the Dragon Computer

PUT(Xl,Yl)-(X2,Y2),A

200 PIJH 0 , 50)-(49 , 99) ., R

If you RUN the program so far you will see that a filled box is drawn and
then this design rapidly repeated in the adjacent area (Figure 8.4). It is
interesting to note that the original box takes 0.22 seconds to draw but the
whole area is then PUT back in only 0.04 seconds. This very simple demon­
stration shows that it can be quicker to GET and PUT adeSign than to draw
it from scratch and this is an important advantage of these commands.

Figure 8.4 PUT

•
•

When PUT is used as above then all points in the target area will be set to
the same condition as the appropriate points in the source area, thus
whatever was previously in the target area is erased completely. Care must
be taken to check that the size of the area you PUT is the same as that you
GET, or the copying will get out of phase. Figure 8.5 shows the effect of an
error in coordinates and a similar effect will be produced if you GET with
graphic detail (G) and then PUT as described above, without specifying
any of the optional actions.

1 16

Chapter 8 Copying the Screen

Figure 8.5 PUT coordinates wrong

•

Actions

It is also possible to add a series of optional 'action' parameters to the PUT
command.

PUT(X I, YI)-(X2, Y2),arrayname,action

Five different actions are possible, and these only produce reliable
results if you saved full graphic detail with PUT G.

The first two of these will obliterate whatever is in the target area and
replace it with a copy of the source area. To see these in action modify the
existing GET command to save full graphic detail, add PSETto the PUT in
line 200, and add a further PUT . . . PRESET command.
100 GET(0 , 0)-(49 , 49) , A , G
200 PUT(0 , 50)-(49 , 99), A , PSET
2 10 PUT(50, 50)-(99 , 99 l, A , PRESET

PSET has exactly the same effect as specifying no action, producing a
'positive' copy in which all points in the target area are set the same as those
in the source area. The PRESET option is the inverse of PSET and pro­
duces a 'negative' of the source area by setting all points that were not set in
the source array and resetting all points that were set in the source array

117

Advanced Sound and Graphics/or 1he Dragon Compuler

(Figure 8.6). As both of these wipe out the target area no superimposition
occurs if you PUT back copies with overlapping coordinates (Figure 8. 7).
220 PUT< 0, 75)-(49, 1 24) , A, PSET
230 PUT(50, 75)-(99 , 1 24) , A , PRESET

Figure 8.6 PUT

Ill

111a

PSET PRESET

You will notice that the speed of operation of PUT has decreased mark­
edly now that a specific action is called for. If you time it again you will find
that it now takes 0.28 seconds to put a 50 x 50 area, instead of the 0.04
seconds needed when no option was chosen.

The other three options all ma:ke some form of logical comparison bet­
ween the way points are set in the source and target areas. To show how
they operate we will change our box to an empty version, add a series of
circles to the screen, delete line 230, and then PUT the box over these circles
with all the different options (Figure 8.8).
30 L I NE< 10 , 1 0)-(40, 40) , PSET , B
40 C IRCLE(25, 75) , 20
50 CIRCLE< ?5, 75 l , 20
60 C IRCLE(125 , 75) , 20
70 C IRCLE(1?5 , ?5) , 20
80 C I RCLE(225 , ?5) , 20
200 PIJT(0 , 50)-(49 , 99) , A, PSET
2 1 0 PUT(50 , 50)-(99, 99) , A , PRESET

1 18

Chapter 8 Copying the Screen

220 PUT(1 00, 50)-(149, 99) , A , OR
240 PUT(1 50, 50)-(199, 99), A, AND
250 PUT(200 , 50)-(249 , 9 9) , A, t�OT

Figure 8. 7 PUT wilh overlap

iiB

PSET PRESET
Figure 8.8 Alternative PUT actions

D

D

PSET PRESET OR

•

AND NOT

1 19

Advanced Sound and Graphics far the Dragon Computer

• PSET obliterates the circle completely and produces only the box.
• PRESET gives the inverse of PSET.
• OR superimposes the source and target areas and leaves set all points

which were set in either area, giving both box and circle.
• AND resets all points that were not set in both source and target areas

so that only the four small areas of overlap remain set.
• NOT inverts all points in the target area, irrespective of what was in

the source area. It therefore produces an inverse copy of the original
contents of the target area (the circle). Notice that NOT does n0t fill
an array, even though one must be specified to indicate the size of the
area.

The value of these comparison options will become more apparent if we
look at some applications.
Movement

The simplest way to produce movement is to GET without graphic detail
and then PUT at coordinates which are indexed to variables, without any
option. If you add this autorepeating cursor keyroutine (lines 300-340)
and then RUN in PM ODE 4 you will find that the up and down arrow keys
work effectively along the Y axis, but that the program crashes if you try to
move left or right along the X axis.
1 0 PMODE4 , 1 ° SCREEN1 , 0 ° PCLS
20 DIM A(69)
30 L I NE(10, 1 0)-(40 , 40) , PSET , B
40 X I= l
50 '(I= l
100 GET(0 , 0)-(49, 49), A
200 PUT(X+0, Y+50)-< X+49, Y+99) , A
300 I F PEEK< 337)=255 THEt4 300
3 10 IF PEEK< 341)=223 THEt4 Y=Y-V I
0 GOTO 200
320 IF PEEK< 342)=223 THEt4 Y=Y+YI
, GOTO 200
330 IF PEEK< :34:3)=223 THEt·l X<=X-XI
, GOTO 200
340 IF PEEK< 344)=223 THEN X=X+XI
, GOT0 200
350 GOTO 200

No trail is left as the step is so small that the visible area is obliterated at
each move (Figure 8.9). If you change the coordinates of the original box to
the extreme edges of the area you GET what is happening is more obvious
(Figure 8.10).

120

Chapter 8 Copying the &rttn

30 LINE(0 , 0)-(49 , 49), PSET , B

Figure 8.9 No trail left if step small

D

Figure 8.10 Trail left if no margin

121

Advanced Sound and Graphics/or the Dragon Computer

When the increment YI is I then a solid block follows the movement, but
increasing YI (line 50) will produce less overlap until eventually if YI is
greater than 50 no overlap will occur.

If you GET graphic detail and PUT with PSET the program works prop­
erly along both axes but movement is much slower (0.28 seconds/cycle
instead of 0.04 seconds).
100 GET(0 , 0)-< 49, 49) , A , G
200 PUT(X+0, Y+50)-(X+49, Y+99) , A,
PSET

RUNning the original program which does not save all graphic detail in
different PMODEs produces some strange results, although vertical
movement is again no problem. The program does not crash if you move
horizontally, but it does move in fits and starts in different sized steps! A
little experimentation reveals that in PMODEs 4, 3 and I rapid but rela­
tively smooth horizontal motion is possible provided that you are happy to
change the X axis increments to steps of 8.
40 X I=8

The fastest way to update each move is thus to avoid options, although
this will always.leave a trail unless there is a blank space at the edges of the
are� you GET which is at least as large as the step size at each move. The
only disadvantages of making such a blank border are that the area to be
moved must be larger than the actual design and two designs cannot be
placed absolutely side by side without partial erasure of one (Figure 8.11).

An alternative approach is to use a blank array to obliterate the old posi­
tion as you move. The blank array should be the same size as the 'real'
array, although, surprisingly, you do not have to use GET to fill it. The
simplest method is to PUT each array in turn, although this produces a
violently flashing display.
20 D IM A(69) , 8(69)
200 PUT(X+0, Y+50)-(X+49, '(+99) , A
210 PUT(X+0, Y+50)-(X+49 , Y+99) , 8

A more rational approach is to erase only the old area if a move is made.
We could do this by moving the erasing line to a subroutine which is only
called if a move is made (PEEK(337)< 255).

300 IF PEEK(337)=255 THEN 300 EL
SE GOSUB 500
500 PUT< X+0, 'f+50)-(X+49 , Y+99), 8 ,
RETURN

122

Chapter 8 Copying the Screen

Figure 8.1 t Partial erasure if side by side

- ·

An alternative to the subroutine approach is to store the old coordinates
and PUT the blank array back at these. Whatever method you use the main
thing to remember is that consideration of the flow of the program is
important if you are to avoid unnecessary PUT commands and thus
minimise execution time.
Superimposition
The OR option is extremely valuable as it allows you to appear to move one
design over (or through) another, as well as simply to superimpose them. It
is not logically possible to superimpose two moving areas by using
PUT OR with both arrays as there will then be no erasure of the old
position in either case. The simplest method is to PUT PSET the first
and then PUT . . OR the second, so that the first PSET clears the entire
area.

The speed of execution decreases with the size of the area so that
although superimposition of small areas is almost instantaneous the pro­
gress of the entire PUT sequence can be seen in larger aieas.

Add the PSET option to the moving PUT of array A, draw a circle, GET
this into another array (B), and then PUT it back with OR.

20 D IM A(69) , 8(69)
60 C I RCLEC 75 , 25) , 20
1 1 0 GET(50, I))-(99, 49 l, A, G

123

Advanced Sound and Graphics for the Dragon Computer

200 PUT(X+0, '/+50)-(X+49, '/+99) , A ,
PSET
210 PUT(50, 50)-(99., 99), B, OR
:300 IF PEEK(:3:37 >=255 THEN :300

The moving box can now be placed in any position over the static circle.
Selective erasing
NOT and AND do not seem very exciting on their own but a combination
of NOT and AND can be used to produce a selective erasing routine. The
logical sequence is as follows:
1) GET first design into array A.
2) Invert first design with PUT . . . A,NOT
3) GET inverse version of first design into new array B.
4) Superimpose first and second designs with PUT . . . A,OR.
5) Superimpose inverse version of first design over combination of first
and second designs with PUT . . . B,AND.
20 D IM A(69) , BC 69)
60 C IRCLE< 1 25 , 75) , 20
100 GET< 0, 0)-(49, 49), A, G
1 1 0 PUT(0 , 0)-(49, 49), A, t�OT
120 GET(0 , 0)-(49 , 49), B , G
2�0 PUT(1 00 , 50)-(1 49 , 99) , A , OR
2 1 0 PUT(100 ., 50)-(149 , 99) , B , At!D

The box appears superimposed on the circle by OR (Figure 8.12) and is
then selectively erased completely by AND with its inverse, but only those
points on the circle which are common to the first design are removed
(Figure 8.13).

Saving Screens
In memory
It is sometimes useful to be able to store the contents of the screen so that
you can recreate it later. For example you might want to be able to save a
partially complete picture at some point, so that temporary alterations
could be made and checked without the risk of disastrous results. The most
obvious way to do this is to PCOPY the current screen page(s) onto other
graphics pages. The number of complete screens that can be saved depends
on the PMODE. If you set the graphics pages to the maximum (by
PCLEAR 8) then in PMODEs 3 and 4 one copy can be kept, in PMODEs 1
and 2 three copies, and in PMODE O seven copies.
124

Cho pt er 8 Copying the Screen

Figure 8.12 Box over circle

Figure 8.13 Box selectively erased

Of course you can also save only certain pages of the screen where more
than one page is used. Although you cannot reserve more than eight pages

125

Advanced Sound and Graphics for the Dragon Computer

of memory for graphics it is possible to store extra copies elsewhere in
memory. The easiest way to do this is simply to GET and PUT the whole
screen area into an array as described earlier. This takes up the same
amount of memory as the equivalent graphics page, but this memory is in
the variables area and positioned above the program rather than below it.
Using GET and PUT has the usual advantages that different 'actions' can
be specified and any part of the screen can be saved and recreated in any
position, but the disadvantage is that it is slower than PCOPY.

Permanent storage
Any screens stored in memory will be lost when the computer is turned off,
but permanent copies can easily be saved on tape as a machine code file
with CSAVEM. This command needs to include the start and end
addresses of the area to be copied, and the number of bytes to be copied
(the difference between these).

CSA YEM "name" ,(start),(end),(number of bytes)

These values will vary according to which PMODE is in operation and
which page it starts on (Table 8.3).

Table 8.3

Y ALUES FOR CSA YEM IN DIFFERENT PMODEs

PMODE START* END:t. flO OF BYTES

0 1536 307 1 1536
1 1 536 4607 3072
2 1536 4607 3072
3 1536 7679 6144
4 1 536 7679 6 144

:t. add 1536 for each start Pa9e Pos it ion
above Pa9e one.

For example if you have a design in PM ODE 3 which starts on page I you
can save it at any time by stopping the program with BREAK and typing
this as a direct command:

CSA YEM "DESIGN", 1536,7679,6144

126

Chapter8 Copyingthe &reen

CSA YEM can also be included in a program so you can define variables
at the start and put it into a subroutine.
H..t t·H$= 1 1 DES I Gt� I I ; '.::"::= 1 5::?6 = F=7679 = 8=6
144

• • • • • • GOSUB 1 0000

1 0000 CSAVEM t·l$, S, F, 8 , RETURM

To retrieve the design you CLOADM as a direct command or in a pro­
gram line. CLOADM does not have to specify a name or any addresses and
on its own it will load the next file it finds back into original position.

CLOADM (load next file onto original pages)

If you give a filename it will search and load that file.
CLOADM"DESIGN" (load file called "DESIGN" onto original
pages)

The advantage of putting CLOADM in a program line is that you can set
up the hi-res screen first and actually watch the screen fill.
1 0 PMODE 3, 1 ° SCREEM 1 , 0
20 CLOADt1
1 000 GOTO 1 000

If you want to load the file back onto different pages you can specify an
"offset". As each page is 1536 bytes long each offset of 1536 will move the
design up one page.
20 CLOA[>M" DE:, I Gt·l " , 15 :36

lfyou RUN the above it will load back ontopages2 to 5 instead of 1 to 4.
This will proceed OK at first but your program will then vanish as you load
machine code all over it! Don't forget that you must clear enough graphics
pages first, by PCLEAR 5 in this case.

At first sight you may think that you should be able to save the arrays
filled by GET as ASCII files on tape with PRINT # - 1. However this is not
actually possible as GET does not fill the array in the normal manner but
writes over all the element markers. In practice this does not really matter
as you can save the screen with CSA VEM and then GET the information
back into the arrays when this has been CLOADMed.

127

Advanced Sound and Graphics for the Dragon Computer

Hard copy
It is possible to print out the contents of the hi-res screen on most printers
with graphics capability using only BASIC commands. In fact all the
screen print illustrations in this book were produced in this way. The pre­
cise details of the program required will vary from printer to printer, as the
methods of setting up graphics modes are very variable. We cannot
therefore give full details, but will explain the general principles which
must be applied in setting up a printer.

First the printer must be set in graphics mode (see printer manual). You
cannot simply transfer the contents of each byte on the page to the printer
in sequence as the bytes are mapped from left to right but the printer works
on vertical segments (Figure 8.14). You must therefore translate the screen
coordinates into vertical sections. In the byte which is transferred to the
printer any bit which is 'on' will produce a printed point and any bit which
is 'off' will produce a blank. Fortunately the status of each individual pixel
of the display can be found by PPOINT(X, Y). The general sequence of
operations is therefore to read the screen in vertical sections and set the bit
if PPOINT is not zero. Setting the bit can be done by adding the appro­
priate number (1-128) to the byte by a logic test against PPOINT.
Figure 8.14 Comparison of screen and printer bytes

"'
w V)
1- W
z I­
.... >--
"' CQ .,_

...
<:I)

II
0,
("IJ

+ �
+ "'

ro
II>
II "' "' r- (Q

II + ... ,.., ro + + "" �
+ +

S C R E E N C :J
B Y T E S • II I I I •

6 � "' •=•I•=•
r- 8 6 c•:J:JI•:J
II 6 0 CC-:J:J

(.t,

+ 3 8 a:•I•::O
8 6 C•:J:JI•:J

1 2 9 •:J:Jil.1 •
Most printers read eight vertical points at a time and this arrangement

will set up the first printer byte which is taken from the top left of the
screen.

128

Chapter 8 Copying the Screen

1 0 >(=0
1 00 'l=0
120 A=PPOI NT(X , Y)*l +PPOINTC X , Y+ l
H2+PPOINH r: , '/+2):t4+PPO I HH ,,: ., Y+3
):t.8+PF'O I t-ff(r: , '/+4)*1 6+F'PO It-ff(X, Y+
5):t.:32+F'F'O It-ff(X , '/+6):t64+PPO It-ff(;" ,
'l+? /t: 1 28
140 PRINT#-2 , CHR$(A) ;

The character representation of this byte is transferred to the printer
buffer by PRINT #-2,CHR$(A) but this will not be printed until a carriage
return (CHR$(13)) is sent or the buffer is full. To print the first complete
row we must increment X from O to 255, and send a CHR$(13) at the end.
1 1 0 FOR X=0 TO 255
1 50 tlEXT :�
1 60 F'R INT#-2 , CHR$(1 3) ;

To move down the screen we must increment Y in steps of 8.
1 00 FOR Y=0 TO 1 9 1 STEP 8
170 t·lrnT Y

The Seikosha GP 1 OOA is unusual in that it reads only seven bits at a time
and the eighth bit must always be on so Y must be STEPed in 7's and the
last bit always set.
1 00 FOR Y=0 TO 1 9 1 STEP 7
120 A=PPOHff(X ., Y):t. l +PPO I NT(X , �'+ l
):t.2+F'PO I NT()(, Y+2):l:4+PPOHm: X , Y+:3
):t.8+PPO!t-ff(X, Y+4):t.16+PPO! t-H(X, Y+
5):t.:32+PPO Uff(X , Y+6)*64+ 1 28

If you want to print only part of the screen you can set appropriate limits
for X and Y.
1 00 FOR Y=20 TO 1 00
1 1 0 FOR X=60 TO 90

This routine will print the screen 'as-is' - that is any bit set will be prin­
ted. This means that in a two-colour mode green or buff will be printed and
black ignored. In a four colour mode the highest numbered colour will be
indicated by both bits of a pair being printed, and the lowest colour by

129

Advanced Sound and Graphics for the Dragon Computer

neither being printed. The middle colours will then print either the right or
left bit, producing left and right handed zebra stripes (Figure 8.15). It is
sometimes useful to be able to invert the printing and this can be done by a
change in the logic test so that ABS(PPOINT(X,Y + n) - 1) is used in place
of PPOINT(X, Y + n). More complex routines can also be developed for
four-colour modes which sort the colours by their PPOINT value and pro­
duce more distinctive patterns (Figure 8.16).

Figure 8.15 Zebra stripes when picture created in PMODE 3 printed in
PMODE 4

Figure 8.16 'Four colour' print

130

CHAPTER 9

Graphic Presentation of Data

Bar charts
The low resolution graphics are of limited value for drawing most types of
graph as they are quite crude, but they do have the advantage for bar charts
that nine colours (eight plus black) and the normal text are easily available.
Two colours will be needed for the background and axes, but that still
leaves seven colours to indicate different things on the chart.

To demonstrate a low-res bar chart we will start by CLSl to a green
background, set the first colour to 2 (yellow) and form the X and Y axes by
RESETting points to black.
10 C:LS 1 , C:=2
30 FOR X=30 TO 60 · RESET(X) 25) : NE
:,,:T :<
40 FOR Y=4 TO 24 RESET(30 , Y) , NEX
T 'f'

The X axis can be labelled by a single line.
��i.::1 PF.: I HT i:.� 432 ., 1 1 l 2 :3 4 5 6 7 1 1

but the Y axis requires a loop which moves the print position (YP) up the
screen for each value of Y (YV). YV starts at O and increments by (396-
76)32(ie 10) for each repeat.
70 FOR YP=396 TO 76 STEP-32
80 PR I t·�T @�i'P ., YV .;
90 YV=YV+ 1 0 : NEXT YP

Now to choose seven pseudo-random values for the different bars bet­
ween about O and 100.
1 Hi D IM R(7) , FOf;: t·l=O TO 6 , W t·i >=R
t·ic,,: :30 He �a 1 s ::, , ME:, ,:T t·i

The pixels from 5 to 24 (20 positions) must represent I 00 divisions hence
each block will be equivalent to five units. Our array elements must be
therefore converted to a number of blocks (BL).

131

Advanced Sound and Graphics for the Dragon CoTflputer

170 FOR N=0 TO 6 • 8L=A(N),5
200 NE:-n t·l

Finally we loop up from the X axis (5) SETting the required number of
blocks (BL + 5) at the appropriate Y point (29-M), moving the X coordi­
nate (N*4 + 32) across four points and the colour up one number
(C= C + I) for each complete column.
180 FOR M•5 TO BL+5 • SETC N*4+32 , 2
9-M , C)
190 t·lrnT t•1 , C•C+ l
2 1 0 A!li• HWE'l!I' , IF A$= " " THEt·l 1 20
EL:3E RUt·l

A number of things can be done to tidy up the display. First we should give
the graph a title and label the axes.
20 PF n NT tR 97., 11 mi cro-s.:1. l es 11 · , PRI
NT � 130, 1

1 unl i m i ted 1 1
;

60 PRlt·H 1� 469, 1 1 \'EAF: 11 .:
1 00 PR nn ,1227 , " ;, PROF I T " -'

The list of numbers on the Y axis is rather ragged but it can easily be
formatted with PRINT USING " # # #" and lined up correctly.

:30 PR HH 1�'r'P ., " " .' · PR ItH US I tlG" ###

" ; \"./ .•
Finally the effect is more interesting if some delay loops are included to

slow down the calculations.
1 85 FOR T=1 TO 1 00 · tsrnT T
1 95 FOR T=l TO 1':1(1 , NE:>:T T

Line graphs
Line graphs can be dealt with easily in high resolution (Figure 9.1). First we
need to set some screen coordinate limits for the start and end of the axes
(XS, XE, YS, YE).

132

Chapter 9 Graphic Presentation of Data

Figure 9.1 Line graph

/'\,,,,
/ I,

··•· .. } \,.,
1---i

The size of the X axis divisions (XI) depends on the number of readings
to be fitted in. For this example we will generate a random number of
readings which is in excess of five, but this would obviously normally be
INPUT by the user.
20 t·JR�RHC,,:: 2•3)+5
30 :< I =c >,:E-:,-,:'.:: ::vlW

The data to be plotted needs to be entered into an array, in this case we
will do it at random.
40 [:• I M AC l·W)
50 FOR t·l=l TO t·W
60 A(N):RND(1 00)tRND(9)
?O tiE>n ti

A check through the array for the highest value is included and this value
is then scaled down in l0OJo steps until it is on scale.
80 FOR H= 1 TO t·lF:
�o IF RC H) : Hr THEH H l =AC H)
1 00 tiE>(T H
1 1 0 :3F = l
1 20 t·iH=H J :!SF • I F t·JH>Cr"3-·YE) THEH
SF=SF-0 . 0 J , GOTO 1 20

The Y axis divisions are now set to 50 times the current scale factor (SF).
J :3<j 'lI =50tSF

133

Advanced Sound and Graphics for the Dragon Computer

Now that the data is ready the hi-res screen is set up as white on black by
CO LOR 0, 1, and the X and Y axes drawn.
1 4(1 PMODE4, 1 • SCF:Ern 1 , ,) • PCLS 1 • COL
OR0, 1
1 50 L INEC XS, YS)-(XS , YE) , PSET
1 60 L I NEC XS , YS)-(XE , YS) , PSET

Scale marks are set up on the X axis as a series of short LINES which are
Xl apart.
1 70 FOR N=XS TO XE STEP X I
1 80 LI NE(N , YS)-(N , YS+5 l , PSET
1 90 NE,:T t�

The Y axis markings are more complex as three different length lines are
used to indicate each quarter of each main division. They are placed
increasing distances apart by increasing the STEP size by factors of 2. The
first type of mark is most frequent and is 3 points long, the second type is 5

points long, and the last is 8 points long. The marks overwrite each other
but this method is fast and is much simpler than the alternative sorting
procedures.
200 FOR t·l=YS TO YE STEP -Yl/2
210 L I NE(XS,N)-(XS-3 , N l , PSET
220 NE:�T t·l
230 FOR t·l=YS TO YE STEP -YI
240 L I NEC XS , N)-(XS-5 , N) , PSET
250 NE)<T N
260 FOF: t�='.'S TO YE STEP -''/ l:t:2
270 LI t�E(>�S, N)-(:X:S-8 , t�) ., PSET
280 NrnT tl

As no text has been included in this program it is useful to have a scale
line which gives a visual indication of the scale factor in use. This is formed
by making a blank move to the left of the Y axis and ORA Wing a scale
mark there at a scale (S) which is 40 times the scale factor applied to the
data.
290 D�:A�J 11 BM'1 +STR$(:x:s-20 >+ 11

, •
1 +STR

$(''/S-20 l+" S" +STR$(I tH(,,;F�:40 l)+ " 8
M+0 ·' ·-5L2RU 1 0LR2S4 11

We now need to make a blank move to the start coordinates at 0,0
assuming the graph goes through the origin (if it does not you need to make
a Blank Move to the first X position and first Y array element.

134

Chapter 9 Graphic Presentation of Data

30(1 DRAW' E:M " +STF:$(:,::; :,+" , " +STR$(''I'
S)

The graph lines are now constructed by DRA Wing a MOVE to coordi­
nates defined as the next X position and a Y value calculated from the con­
tents of the appropriate array element multiplied by the scale factor.
3 1 0 FOR N='.":S TO)•:E :,TEP :,: I
320 DRHl•J 11 t·l 11 +STf;:$(I t·�T(��))+ " , 1 1 +STR
$(l��T('/S-(A((t·�-::·�S :;i..<�n)l::F)))
330 t·lE:>(T t·l
:34�1 F:Utl

If you add the final line and �UN the program will cycle continuously
through a series of randomly generated graphs.
Contour maps
A development of the line graph is the contour map (Figure 9.2)which links
together points with the same value. This value is normally height (the
example is the view through our window!) but it could just as easily be
isobars on a weather chart. First we set up the screen and make a box
around the map.
10 PMODE 4 , 1 • SCREEN1 , 0 • PCLS
20 L I NE(10 , 10)-(1 40, 1 60) , PSET , B

Figure 9.2 Contour map

·· .. ___ /

135

Advanced Sound and Graphics for the Dragon Computer

The secret of making a simple program here is to enter the coordinate
information sensibly. The DATA is taken from the map as pairs of X and Y
coordinates which give the position of the next point with the same value,
that is the next point to draw to (Figure 9.3). A pair of zeros indicates that
particular line has ended and the next coordinates define the start of a new
line.

110 DATA L L 1 , L 0 , 0 , 1 , 2 , 2 , 1 , 0 , 0
) 1 , 4 , 1 , 3 1 2 , 2 , 3 , 1 > 0 ., 0 , 1 , 5 , 2, 4 , :3 , :3
, 4 1 2 , 5 , L 6 , 1 , 0 1 0, 1 , 6 , 2 , 5 , 3 , 4 1 4 , 3
, 5 , 2 ., 6 , 2 , 7 , L 0 1 0, 7 , 2 1 8 , 1 > 0 , 0 , 1 , 7
, 2 , 6 , 3 , 5 , 4 , 4, 5 1 3) 6 , 3 , 7 , 3 1 8 , 2 , 9 , 1
} 10 , 1, 1 1) 2 , 12., 3 , 13, 4 , 14 , 5 ., 0 , 0 1 11
, 1 , 12 , 2, 13 , 3 , 1 4 , 4 , 0 ., 0 , 1 2 , 1 , 13, 2 .,
14, :3, 0, 0 , 13 1 1 J 14, 2 , 0 1 0
120 DATA 14, 1 , 0 , 0, 4 , 5 , 5 , 4 , 6 , 4 , 7 ,
4, 8, 3 ., 9 , 2, 10, 2, 1 1 , 3 , 12, 4, 13, 5, 14
, 6 , 0 , 0 , 1 , 8 , 2 , 7 , 3 , 6 , 4 , 6 , 5 , 5 , 6, 5 , 7
, 5 , 8, 4 , 9 1 3 , 10, 3, 1 1 , 4 ., 12 , 5 , 1:3 , 6 , 1
4 , 7 , 0 , 0 , 1 , 9, 2, 8 , 3, 7 , 4, 8 , 5 , 7 , 6 , 7 ,
7 , 7 , 8 , 6, 9 , 5, 10, 5 , 1 1 1 6, 12, 7 , 13, 8,
14, 9 , 0 , 0 , 1 , 10 , 2 , 9 , 3 , 8, 0 , 0 , 4 , 9, 5 ,
8 , 6 , 8, 7 , 8 , 8 , 7 , 9 , 6 , 10, 6 , 1 1 , 7
130 DATA 1 2 , 8 , 13, 9 , 14, 10 , 0 , 0 , 4 , 1
0 , 5 , 9 , 6 , 9 , 7 , 9, 8 , 8 , 9, 7 , 10 , 7 , 1 1 , 8 ,
1 2 , 9 , 1 3 , 1 0 , 14, 10, 1 4 , 1 1 , 1 4 , 1 2 , 14,
13, 13, 14, 12, 15, 11, 16, 10, 15, 9 , 15,
8, 15 1 7 J 15, 6 , 16, 5, 16 , 4 , 16,' 3 , 16, 2,
15, 1, 14, 1, 13, 0 , 0, 4 1 7 , 5 , 6 , 6 , 6 , 7 , 6
, 8 , 5 , 9 , 4 , 10 , 4, 1 1 , 5 , 12 , 6 , 13 , 7 ., 0 , 0
, 3, 9, 2 , 10, 2 , 1 1 , 2, 12 , 3 , 13
140 DATA 4, 12 , 3, 1 1 , 3 , 10, 3 , 9 , 0 , 0 ,
L 1 1 , 1 , 12, 0 , 0, 1 , 15 , 2 , 16 , 0 , 0 , L 16
, 0, 0, 7, 16, 8, 16, 0, 0, 9, 16, 10, 16, 0 ,
0 , 12 , 16, 0 , 0 , 14 , 16 , 0 , 0 , 14 , 15, 0 , 0 ,
14 , 14, 0 , 0 , 2 , 14 , 3 , 15 , 0 , 0 , 2 , 13 , 3 , 1
4, 4 , 15, 5, 14, 5 , 13, 5, 12, 5, 1 1 , 5, 10,
0, 0 , 1 1 , 9 , 11, 10, 12, 10, 0, 0 ., 11, 13 , 1
2, 13 , 0 , 0, 1, 16

136

Chapter 9 Graphic Presentation of Data

Figure 9.3 Conneding points on contour map

L

P O i fl T

'\ � :

T

, S T A R T

2

The start position is first READ, a Blank Move made to this, and the
pointer RESTOREd to the start of the DATA.
30 READ X , Y • DRAW "BM " +STR$(X* 1 0)+
" , " +STR$(1 70-(Y:t 10)) • RESTORE

The 175 pairs of DAT A points are now read in turn. If X and Y are not
zero then a MOVE is made (line drawn) to coordinates calculated by X and
Y multiplied by 10, and then the next points READ. As the first DATA was
RESTOREd the first line is of zero length to and from the first point. If a
zero is READ then the next values of X and Y are READ, a Blank Move
made to those coordinates, and the next values READ.
40 FOR N=l TO 1 75
50 READ X , Y
6 0 IF X=0 THEN READ X , Y • DRAW"BM"
+STR$(X:l'. 10)+" . , "+STf;'.$(1 70-(Y:l'.1 0))
• flEXT N • GOTO 90
70 DRAW" M" +STR$(X:tl 0)+" , " +STR$(1
70-(Y:t.10))
80 NEXT N
90 GOTO 90

Pie charts
Circular pie charts in which the size of the slices is the indication of quantity
can be easily produced in high resolution. First we need to call a suitable
four-colour hi-res mode, set up an array to hold our values, and set the first
colour to 1. Pie charts are usually divided into quite a small number of
slices so we will take a series of seven random numbers. Note that the total
(T) also needs to be calculated.

137

Advanced Sound and Graphics for the Dragon Computer

10 PMODE 1 , 1 ° SCREEN 1 , 0 ° PCLS
20 D IMSL< 7) , C:= 1
:30 FOR tl� 1 TO 7 , SL< N)=RND(1 0) T=
T +SL(N) , NE,:T t·l

Now we can draw a circular outline, and then a series of arcs of increas­
ing radius and differing length to indicate the slices (Figure 9.4). As
explained earlier the arcs will not be completely filled, but they are still
quite effective, and very simple to construct. The filling is more complete
in PMODE I than in PMODE 3.

40 CI RCLE(1 28 , 96 J , 90
50 FOR S=l TO 7
60 F I =ST+(SL(S)/T)
7>.l FOR R= 1 TO 88
80 C I RCLE(1 28 , 96 J , R , C , 1 , ST , F I
;JIJ t·lrnT �:
1 00 ST=F l , C=C+ l O I F C >4 THEt·l C= l
1 1 0 t�rnT :3
1 20 A$= I NKEY$, I F A$= " " THEt� 1 2(1
ELSE RUN

Figure 9.4 Seven slice pie chart starting from 9 (90°)

138

Chapter 9 Graphic Presentation of Data

The default start (ST) value will be O so that the first arc will move
clockwise from 3 o'clock. The finish (FI) of the arc is calculated in appro­
priate units by dividing the slice value in the array (SL(S)) by the total (T)
and adding this to the start value. After each arc is plotted the new start
value (ST) is set to the old finish point (FI), and the colour is incremented
by one. If the colour is grea�er than 4 it is reset to I. The largest ARC is
slightly smaller (R - 88) than the radius of the CIRCLE (R - 90) so that the
slice formed in the background colour does not erase the outline.

If you want the slices to start from 12 o'clock you need to set ST to 0. 75 at
the start (if values larger than I are generated the integer part is ignored).
20 D I MSLC 7) : C= 1 : ST=0 . 75

As only four colours are available it is at first sight difficult to indicate
more thail four different slices but one way to ensure that even slices with
the same colour are distinctive is to change the step size of the arcs if more
than four slices are to be plotted and it is also useful to link the step size to
the colour number (Figure 9.5).
20 D I MSL(7) : C:::: 1 : SF'=2 : ST=[1. 75
60 FI =ST+(SL-'.'3)/T) , IF S >4 THHl S
P=6
7(1 FOR R= 1 TO 88 STEP :3P:t:C

Figure 9.5 Seven slice pie chart starting from 0. 75 with step size linked to
slice number

139

CHAPTER 10

Three Dimensions

Presenting a three-dimensional view of an object is a very effective way of
making it look more solid. The important thing about three-dimensional
representation is that lines which are supposed to be further away are
drawn smaller. For example a looping program which draws a series of
boxes which get larger and are offset slightly each time gives the impression
of a square cone (Figure 10.1).

1 0 PMODE 4 , 1 , SCREEN 1 , 0 PCLS
21l1 \'0=0 : >::0=5
:30 FOR X= 1 0 TO 100 STEP 2
40 L l t·�E(X) Y)-(:x:+R} V+R), PSET) 8
50 'r'D==\'O+2 : �-<O=XO+2
60 NE:,T X
520 A$= HW:E\'$, IF A$= " " THEH 520

530 RUN

Figure 10.1 3-D Box Section

141

Advanced Sound and Graphics for the Dragon Computer

An even more real tube effect is produced by drawing a series of offset
CIRCLES of increasing radius (Figure 10.2).

20 'l'0=50 , R=30
30 FOR X=50 TO 120 STEP 2
40 C I RCLE(X , YO) , R
50 YO='i0+1 , R=R+l

Figure 10.2 Tube

If we set up some limits for X and Y axes (XS = X start, XE = X end,
YS = Y start, YE = Y end) we can draw a rectangle by a series of lines
connecting these points (Figure 10.3).
40 :�S= 100 , XE=250
60 YS= 1 6 0 , 'iE= 1 20
2 1 0 PMODE4 , 1 , SCREEN 1 , 0 , PCLS
230 L I NE(�-�S > VS)-(XE, VS), PSET
240 L l t4E(XS, YE)-()<E, YE) , PSET
260 L l t4E< �:s , YS)-(XS, 'r'E :, , PSET
270 L I NE(XE, YS)-(�:E , 'iE), PSET

Figure 10.3 Lines connected in rectangle

To make this appear as a flat surface in three dimensions we must
displace the back edge by some distance to one side (DI) (Figure 10.4).

142

Chapter JO Three Dimensions

80 r,1 =80
240 L rnE(XS-D I , 'lE)-()<E-D I , YE l, PS
ET
260 LI t·�E(XS, YS)-(XS-D I , rE) , PSET
270 L I NE(XE, YS)-(XE-DI , YE l , PSET

Figure 10.4 Displacement to indicate depth

"---=..__, '--..._
,.....____ -........____

�'-,.-___________ ,_::::--,,.....;;""'

Although this looks 'flatter' it is still not quite correct as the back edge is
the same length as the front edge. It is the line from (XS-Dl,YE) to
(XE-DI,YE) (line 240) which needs shortening at one end and a little
experimentation will reveal a value for this perspective factor (PF) which
'looks' right. You must not forget that line 270 must also be modified.

80 D I =80 • PF=25
240 L rnE(XS-C• I , VE)-(XE-D I -PF ., YE l
, F'SET
270 L r nE< XE, '(S)-(XE-D I -PF , YE) , PS
ET

If you want to produce a three-dimensional graph you can usually
actually get away with forgetting about getting the perspective exactly
correct, especially if you leave out the top horizontal and right vertical
lines, so delete the perspective factor and lines 240 and 270 (Figure 10.S).
We need some data to plot so let's generate some at random.

1 00 D I M A(1 5 , 1 5)
1 1 0 FOR t,=0 T O 1 5
1 20 FOR M=0 T O 1 5
1 313 A (N , t1)= ! tH(RN[>(N:t:3 H20+RND(M
:t:3))
1 40 NEXT t1
150 NEXT t,

143

Advanced Sound and Graphics for the Dragon Computer

Figure 10.S X and Y axes

-
-
--
-

-�---------------

-
­·--------------

That produces 225 numbers in a 15 x 15 two-dimensional array which we
will use to indicate height. To produce a 3-D graph linking these points we
need to define the divisions on the X (XI) and Y (YI) axes, and arrange to
step through the coordinates. The X loop is outside the Y loop so we will
move first from front to back.
20 Xl =20 , YJ = 1 0
290 FOR N=XS T O X E STEP �:J
330 FOR M=YS TO YE STEP-YI

The step is negative for YI as we want to work from front to back. The
correct X axis array element (XP) is selected by dividing the current N
minus the start position by the size of the divisions.
300 XP=(fl-XS)/XJ

We must next make a blank move to the first position, calculate the next
Y array element and move (draw a line) to the point defined in that element
(Figure 10-6).

3 1 0 DRAW"Bt1"+STR$(fl)+" ., "+STR$(YS
)
320 D=0
:340 YP=(YS-M)/\' I
350 DRAW II t1 11 +STR$(t·�-D)+ 11 � 11 +STR$(M
-A(XP, YP))

Figure 10.6 Front to back moves

144

Chapter JO Three Dimensions

The X axis element must take into account how much displacement (D)
to the left must be made. For the first point this is set to 0, but for
subsequent points it must be calculated from YI.
370 D=D+(Y I:t.2)
380 HEXT 11
390 t·lEXT H

At the end of the first front-back line the X position is incrtmented and
the next line drawn. The left-right lines are drawn in a similar way (Figure
10.7).

4 1 0 D=0
420 FOR M=l'S TO YE STEP-YI
430 YP=(�'S-11 VY I
440 DRAW 11 8f1 1 1 +STR$(:X:S-[))+ 11) 11 +STR$
(M)
450 FOR t,=XS TO XE STEP X I
460 XP=(N-XS)/)0
470 DRAW" M " +STR$(t,-D)+" , "+STR$(M
-A(XP<YP))
490 t,EXT N
500 D=D+(YI:t. 2)
5 1 0 �lE�:T t1

Figure 10. 7 Plus left to right

If you want to include vertical lines to indicate height you can add these
lines which ORA W with N (no update) so that the last position is
remembered (Figure 10.8).
360 DRAW" Nl1" +STR$(t,-D)+ " , "+STR$(
M)

145

Advanced Sound and Graphics for the Dragon Computer

480 DRAW"NM"+STR$(N-D J+" , "+STR$(
M)

Figure 10.8 Vertical lines included

It is also possible to plot in three dimensions without ever showing the
axes (Figure 10.9}.
Figure 10.9 Plot with axes omitted

146

CHAPTER 1 1

Rotation of Figures

Using angled draw command
The simplest type of rotation is catered for directly in the BASIC ORA W
command in which the angle can be specified from O to 3, to give four
copies transformed at 90 degrees. In effect this means that at each turn U is
read as R, R as D, D as L and L as U, etc. At first sight you may think that
you could replace these directly with the diagonal DRAW parameters (E,
F, G and H) to give the intermediate positions, but life is not that simple
(Figure U.1) shows two versions of the same design which differ by an
angle of 45 degrees and if you look closely you will see that the number of
pixels needed to make each section of the same design is actually different
in the two cases. This is because all these commands move an absolute
number of pixel units, but the hypotenuse of an isosceles triangle is
actually almost 1.5 times as long as the other two sides. Thus three units
Up, Down, Left or Right mean the same actual distance on the screen as
two units of E, F, G or H. In Figures 11.2 and ll.3a circlewith a radius the
length of the design has been made around alternative figures made with
equal numbers of pixel units and with the number of units corrected for the
difference in direction.

Figure 11.1 'Draw'ing at an angle

Oc

147

Advanced Sound and Graphics/or the Dragon Computer

This program rotates the two alternate pictures through all the possible
positions, and gives the effect of motion by drawing in foreground and
then background colour.

10 PMODE 4 , l • SCREEN 1 , 0 • PCLS
20 A$="H3U 16E3F3D1 6G3"
30 8$= "U4E 1 1R4D4G 1 1L4"
40 FOR A=0 TO 3
50 FOR C=I TO 0 STEP-I
60 DRAW "A" +STR$(A)+ "C" +STR$(C)+
A$
70 t!EXT C
80 FOR C=I TO 0 STEP-I
90 DRAW "C "+STR$(C)+8$
1 00 NEXT C
1 1 0 NE�:T A
120 GOTO 120

Figure 11.2 Equal numbers

Figure 11.3 Corrected

Using mathematics
To mathematicians all things are possible (they tell us), even if we cannot
understand why and how. If you are really interested in producing complex
rotations then you are going to have to brush up your knowledge of trigo-
148

Chapter I J Rotation of Figures

nometry and matrices and also find a good book on the subject. However,
as an introduction we will look at how to rotate a figure in two dimensions,
as this is quite easy. First you need to set up the screen and define the point
about which you want to rotate (XS, YS). A small cross is formed to mark
this position.
30 PMODE 4, 1 , SCREEt� 1 , 0 ' PCLS
40)(S= 1 28 , YS=96
90 DRAW II BM 11 +STR$(xs)+ 11 J " +STR$('y'S
)+" IJ4C>2L2R4"
Now we need something to rotate, so let's form a bisected triangle pointing
upwards. This is made by connecting four points and we define each of
these in terms of the number of screen points they are away from the centre
of rotation along the X (Pl(N)) and Y (P2(N)) axes, anything to the left or
up being negative. We will put these into an array as it makes the program
for the calculation of each point neater, and then PSET them.
20 D I M P 1 (4) , P2(4)
50 P l (1)=0 , P2(1)=0
6� P 1 (2)=0 , P2C 2)= -60
70 P 1 (3)= -30 , p2(3)=0
80 P 1 C4)=30 , P2(4)=0
1 20 FOR t�=l TO 4
1 50 PSET< XS+PH N), 'l'S+P2(N))
1 60 �!EXT N
230 GOTO 230

To connect the points together we can form LINEs, and as we must con­
nect them in the order of 1 to 2, 2 to 3, 3 to 4 and 4 to 2 (Figure 11.4) we will
put this order in a DATA statement and READ it back from there.
10 DATA 1 , 2 , 2 , 3 , 3 , 4 , 4 , 2
170 FOR L=l TO 4
18�1 READ t� l , t�2
190 L H lEO <S+P l (t- H) , YS+P2(N l))-(X
S+P l (N2), YS+P2(N2)), PSET
200 NEXT L
2 1 0 RESTORE
Figure 11.4 Lines connected to form bisected triangle

II\
I l \ / \ 149

Advanced Sound and Graphics for the Dragon Computer

Now for what looks like the hard bit, calculating the new positions for
each point when it is rotated through a certain angle. The rules are:
I) The angle must be given in radians, so degrees must first be con­

verted.
100 FOR AN=l TO 360 STEP 90
1 1 0 A=At4*3. 142/ 18(1
220 NEXT AN

2) The new X and Y axis positions (NX(N) and NY(N)) for each old
point are calculated by the following two formulae.

130 NX(H l=P 1 (t·l):tCOS(A)+P2(t·l):tS lt-l
(A)
140 N'/(H)= -P 1 (N):tS I t.(A)+P2(t·l nc
OS(A)

Note the minus sign in the second line and also remember that these are
still only displacements from the centre of rotation so we must add this
back on to find the actual screen positions.

The STEP in angle included above is 90 degrees so the triangle will be
constructed in four alternative positions (Figure 11.S). If you reduce the
STEP the number of positions increases and the result can become very
complex (Figure 11.6) and yet another way of generating patterns.
Figure 11.S Triangle rotated through 360° in 90° steps

150

III\ I ',
\

_ _,,..,- ·--...,\
_,,..,- \----.... ______ _ ., -......_

.._____ \ I _,,.----

-----..-._.\ _ 1---· ,-----.. _.,,..- 7

\V

Chapter I I Rotation of Figures

Figure 11.6 Triangle rotated through 360° in 10° steps

The design you rotate can be of any shape, and does not have to touch
the centre of rotation. Work out for yourselves what modifications you
need to make to the original coordinates and DATA to produce the picture
in Figure 11. 7.
Figure 11.7 Rectangle rotated away from centre

151

CHAPTER 12

Instant Keyboard Access to Hi-Res

Commands

Although we have already explained in detail how to use each of the hi-res
graphics commands in your programs, all your efforts have had to be plan­
ned in advance. On the other hand drawing directly on the screen can be
very useful as you can change your ideas easily as you go. If you try to use
INPUT in hi-res you revert to the text screen as INPUT halts the program.
On the other hand INK.EY$ can be used, the simplest form of 'direct
drawing' scanning INKEY$ for letters which can be used in a DRAW
string.
10 PMODE 4 , 1 , SCREEN 1 , 0 , PCLS
20 A$= INKE'l$, IF A$='"' THHl 20
:;:£1 [>RAW A$
40 GOTO 2(1

RUN this and you will find that each time you press a valid key (U, D, L,
R, E, F, G or H) you will ORA W Up, Down, Left, Right or in one of the
four diagonal directions.

Of course that is of limited practical value as you can only ORA W in
simple ways, and cannot even MOVE without drawing, so now we will
consider how to build up a sophisticated direct drawing program which
allows you to manipulate all the graphics commands directly from the key·
board whilst viewing the hi·res screen. This relies on keychecks using
INKEYS and also certain PEEKs to the keyboard scan routines, provides
single key definition of graphics commands, and extensive use of GET and
PUT.
Setting up
The first task is to set up the screen with the required PMODE, SCREEN,
and foreground and background COLORs.
1 0 CLS , PRINT"Pt10DE " , J NPUT p , pRJN
T " COLOUR SET " , J NPUT SN , PRINT"FOR
EGROUt�D COLOUR" ' .I NPUT C ! , PRINT"B
ACKGROUtlD COLOUR" , I NPUT C2 , PR I NT

153

Advanced Sound and Graphics/or the Dragon Computer

" X START At,D EHD " , I NPUT XS, XE , PR
IHT " Y START AHD EHD " • IHPUT YS, VE
, GOTO 5000
5000 PMODE P , 1 , sCREEH 1 , SH , PCLS
c2 , cOLOR c 1 , c2 , DRAW " C " +STR$(C l)

A series of arrays must be DIMensioned to hold various areas to betaken
by GET commands. These are each described in detail later. The start posi­
tion is defined by X and Y as screen centre (128,96), and the cursor incre­
ment (IN) set to 4. X and Y are kept updated in the program and always
indicate the current screen position. Finally a list of the single keys which
will be used to access the graphics commands is made in VKS. Note that
there is a space between W and S, and two keys are defined by their CHRS
codes. These are CLEAR and ENTER, which are not displayable cha­
racters.
501 0 D I M CUC 1 0) , D I M OCC 1 0) , DI M S
C(1 229) , DI M W« 200) , D ! M GP(1 229 l
, Dl t1 PR(1 0 l , :<= 1 28 , '-/=96 ' Hl=4 , w:,i;=
" �:BCEFGU1P1,.J 1234KQll '30DT " +CHR!li(1
2 l+CHR!lid 3)+" I A "

W e can now g o back t o the main keycheck routine a t 1000.
5020 GOTO 1 000

Keycbeck routine
Repeated movement in the same direction is easier if keys autorepeat. To
give autorepeat the main keycheck routine looks at locations 337 and 135
instead of using INKEYS. The keys are soned by comparing the CHR$
code of PEEK(l 35) against the list made in VKS using INSTR. The value of
K will depend on the position of the character in the list, and will lead to an
appropriate subroutine.
1 000 I F PEEK(337 l=255 THEN 1 1 30
1 0 1 0 A=PEEK(1 35 l
1 020 A!li=CHRS(A)
1 030 K= HISTR(1 , W$., A$)
1 040 ot, K GOTO 1 200 , t :300 , 1 400 , 1 5
0 0 , 1600, 1700, 1800., 1 900, 2000 , 2 1 00
) 2200J 2300) 2400, 2500 J 2600 , 2700 , 2
800, 3000, 320(1 ,, 3300 , 3400, 3500, 360
(1 , 3700, 3800, 3900 ·' 4000

154

Chapter 12 Instant Keyboard Access to Hi-Res Commands

If the key pressed is not in this list control falls through to the cursor key
check. A logical test for both shifted and unshifted keys is made, and the X
and Y coordinates updated by the current size of increment (IN) as appro­
priate. Checks are included to ensure that the limits of the defined screen
area are not exceeded.
1 ()50 V=Y+(I N:t.((A=94)-(A::: 1 0)))
1 060 'r'=Y+(l tfH (A=95)-(A==9 1)))
1>)70 I F Y :>'iE THEN '/=YE
1 080 IF Y<YS THEN Y=YS
1 090 X=X+(I N*((A=8)-(A=9)))
1 100 >�=>�+(I tH\ (A=2 1)-(A=93)))
1 1 1 0 I F X >XE THEN X=XE
1 1 20 IF X<XS THEN X=XS

Cursor
The cursor needs to be totally non-destructive or it will erase part of the
design on the screen. A very small non-destructive cursor can be produced
by reading a pixel with PPOINT and then PSETting, as described earlier,
but a better way is to GET and PUT an area of the screen around the cur­
rent position. (This conservative (with a small c) GET and PUT technique
is also used extensively elsewhere in this program.) Any size cursor can be
produced but 2 pixels by 2 pixels is convenient. We GET this into the cursor
array (CU), with graphic detail, alid this array is immediately PUT back
with PRESET which inverts the display at that point. After a short time
delay the original screen is recreated by PUTting back array CU with
PSET. The overall effect of this is a rapidly flashing square cursor,

1 1 :3(1 GET(::<-l) Y- 1)-(X+ l ., Y+ l)) CU ., G
1 140 PUT(X- 1 , Y- 1)-(X+l , Y+ l) , CU , P
RE:3ET
1 1 50 FOR tl= l TO 1 •) , t�rnT
1 1 60 PUH X-1 .)'-1)-(X+l ., '/+ 1) , CU , P
:,ET

One is subtracted from the start -limits for X and Y to prevent the cursor
trying to reach illegal negative coordinates when moved to the extreme top
or left.
Moving and drawing
If you RUN this you will now find that the unshifted arrow keys will move
the cursor around the screen, but that no trail is left.

However we really need to produce two different possibilities, moving
without drawing, and moving with drawing. If we test location 337 against

155

Advanced Sound and Graphics for the Dragon Computer

both 159 AND 191 we can distinguish that one of the shifted cursor keys
has been used, whilst still retaining the autorepeat. If an unshifted key has
been pressed then a Blank Move is made to the new X and Y coordinates,
but if a shifted key is used a MOVE is made, thus drawing a line to the new
X and Y coordinates. The line is drawn in the current foreground colour.
1 1 70 IF PEEK(:337::o < > 1 59 AtK> PEEK(
:337)< > 1 9 1 THEt� DRAWBM" +STR!I'(:, :,+
11 ·' 11+STR$('-.') , GOTO 1 tuzn3
1 1 80 DRAW"M"+SH:'lV :,,)+" _. "+c;TR$('r' ;,
, GOTO 1 0>30

RUN again and note the difference between the shifted and unshifted
keys.

Single key routines
A whole series of graphics routines can be called by pressing a single key.
Wherever possible the key is used as a mnemonic (prompt) for the action.
The routines vary widely in their complexity, so let's start with something
very simple.

Cursor increment
The distance moved by the cursor in each cycle is controlled by the incre­
ment IN which is originally set to 4. The keys 1 to 4 are designated to give
four alternative values for IN of I, 2, 4 and 8.

2:300 IN=l , GOTO 1 000
2400 I H=2 , GOTO 1 0>30
2501J It-l=4 , GOTO 1 00>3
260(1 rn=8 , GOTO 1 00(1

Try RUNning again and see the effect of pressing keys I to 4 on the rate
of movement and drawing.

Leaving your mark
Whilst shifted arrows can be used to ORA W lines this can become tedious,
especially for long distances. It would therefore be convenient to be able to
use commands such as LINE, but of course these require the coordinates of
both ends of the LINE to be specified. To use these we must leave a marker
at the start of the LINE and then move the cursor to the end point. First we

156

Chapter 12 Instant Keyboard A«ess to Hi-Res Commands

indicate that we want to drop a start marker by pressing the space bar to
reach the subroutine at 3200.
3200 I F CF= 1 THEN PUTC•:0- 1 ., Y0- 1)
-(?::O+ 1 ., YO+ 1) ., OC , PSET : GOTO 1 [100
32 1 0 XO=X : YO=Y : CF= l
322(1 GET(>::0-1 ., V0- 1)-(>::O+ 1 ., \'O+ 1) .,
OC, G
32:3(1 PUT(><0-1 ., 'l0- 1)-(>m+ 1 ., YO+ 1) .,
OC ., F"RESET
:;124�] GOTO 1 0£10

The first line is skipped the first time through as CF has the default value
of 0, so the 'old' X and Y positions are read into XO and YO and the cursor
flag (CF) set to I. The screen contents at the old position are now taken
with GET into the old cursor (OC) array, and PUT back PRESET to leave
an inverse square at the origin. You return to the keycheck routine and can
move the flashing cursor as before until you reach a point where you want
to make another decision.

If you change your mind and decide that you want to erase your marker
without using it just press the space bar again. As CF is now 1 you will erase
your mark.
Line

Pressing L indicates that you want to draw a LINE from the mark
(XO,YO) to the current cursor position (X,Y). If you have not made a
mark CF will be O and you jump straight back. You must also PUT back
the screen display at the old cursor position and reset CF.
1 800 IF CF=0 THEN 1 000
1 8 1 (1 PUT('.:-=:0-1 , Y0- 1)-(>m+l ., YO+ !) .,
OC., PSET
1 82(1 L I HE(,m., 'lO)-()<: , \'), p,,ET
1 830 CF=0 , GOT01 000

Rubout

If you decide that your Line was a mistake you can use R to rub it out by
means of LINE with PRESET in the same way.
1 200 I F CF=O THEt, 1 000
1 2 1 0 PIJTo,:0-1 , 'i0- 1)-(XO+ L YO+ l),
OC, PSET
1 220 L i t,E(XO, YO)-(X, Y), PRESET
1 230 CF=0 , GOTO 1 000

157

Advanced Sound and Graphics for the Dragon Computer

No-update
It is sometimes convenient to form a series of LINEs which radiate from a
central point. The routine for this is reached through N and is even simpler
as you just draw from the old cursor position to the new but do not erase
the old mark.

1 900 IF CF=0 THrn 1 001)
1 9 1 0 L HIE(XO, 'iO)-(:,-(, Y) , P:::ET
1 920 GOTO 1000

If you drop a mark, move to a series of different positions, and press N at
each point you will produce a series of lines.

Finally press the spacebar to erase the old position marker or use 'L'ine
for the last line.
Box and filled box
As both empty and filled boxes are formed by adding suffixes to the LINE
command these can be produced by similar routines. A mark is dropped
and then the cursor moved to the diagonally opposite corner and B or F
pressed.

1 300 IF CF=0 THEN 1 000
1 3 1 0 PUT(>::0- 1) Y0-1)-(;:-;:O+l) 'l0+1) .,
OC PSET
1 320 L HIE(:�o, YO)-(:,: , Y) ., P'.3ET , B
1 3:30 CF=(< • GOTO 1 0m::,

1 6013 I F CF=0 THEfl 1 1)00
1 6 1 0 PUTO:O-L Y0- 1)-C�O+L 'o'O+ l) .,
OC, PSET
1 620 L INE(>W) 'llJ)-(>::) Y)) P:::ET) BF
1 630 CF=0 • GOTO 1 000

Circle
To produce a CIRCLE we need to define the centre and the radius. The
centre is marked as before, the cursor moved out to the edge of the pro­
posed CIRCLE, and C pressed.
1 400 IF CF=0 THrn 1 000
1 4 1 0 PUT(>m- 1 , Y0-1)-(XO+ l , YO+!) ,
OC, P:,ET
1420 R=SQR((ABS(xo-:� Y'2)+(ABS('(I)
-' '() ·2))

158

Chapter /2 Instant Keyboard Acce..s:r to Hi-Res Commands

1 4:30 C IRCLE(:,,:o , YO) , R
1 440 CF=0 , GOTO 1 001:1

It does not matter in which direction you mark the radius (R) as it is
calculated as the hypotenuse of a right-angled triangle formed by the
ABSolute differences in X and Y coordinates between the mark and cursor
positions. The circle will be drawn in the current foreground colour, but
this can also be changed by a single key command to give different
coloured CIRCLES.

Ellipses
Ellipses are just varieties of CIRCLEs as far as the computer is concerned,
but you must now specify both Width and Height separately so some
modification is necessary.
1 500 I F CF=O THEN 1000
15 10 PUT(>=:0- 1) Y0-1)-(X0+1) Y0+ 1))
OC) PSET
152f:1 �J==A8S(:�O->=:) = H=A8S('lO-Y)
1 5:30 C I RCLE(XO , YO), W , , H/W
1540 CF=O , GOTO 1000

To form an ellipse mark the centre, move to a point which is half the
width of the ellipse away along the X axis, and half the height away along
the Y axis (Figure 12.1), and then press E.

Figure 12.1 Cursor in position to mark height and width of ellipse

GET

./ ___ _
(----.\
....)
'·-... ./ --------------

Any area of the screen can be stored in an array by reaching the GET
routine via G. The size of the array originally set up will take the entire
screen so there should be no problems. The screen box to be taken is

159

Ad11anced Sound and Graphics for the Dragon Computer

marked as for a normal box, except that you must mark the top-left and
bottom-right positions in that order.
1 700 IF CF=0 THEN 1000
1710 PUT(X0- 1) ''(0-1)-(::-::o+ 1 , ''(0+ 1) ,
OC, PSET
1 ?20 GET(XO, ''/0)-(),., Y) ., GP, G
1 730 GX=XO-X • GY=YO-Y • CF=0
1740 soutm 255 , 1 , GOTO r n00

The size of the box along the X and Y coordinates must be recorded as
GX and GY so that it can be PUT back correctly.

GET is very useful for producing copies of a single picture elsewhere on
the screen, or for experimenting with different positions for a design.
Backup
As your designs become more complex you become increasingly afraid
that you will make a disastrous irrevocable error. To guard against this you
can include a 'backup' facility which you can use at any point by pressing
'CLEAR'. This facility also gives you the ultimate in 'rubber-banding' (or
what happens if?) as you can store the screen and actually find out.
3700 GET(:>�S, YS)-(XE ., VE) ., SC
3710 SOIJt!Co 255 , 1 • GOTO 1000

This GETs a copy of the entire work area of the screen into array SC,
gives a signal, and returns. To PUT this screen back at any point press
ENTER.
3800 PUT(XS, YS)-< XE , ''(E) , SC
3810 SOUND 255, 1 • GOTO 100<3

Of course this routine will only store one screen as each time you use this
copying process you overwrite the old screen you stored, but it is invaluable
for temporary storage if your nerves are bad. Get into the habit of pressing
CLEAR when you can't think what to do next, and before disaster strikes.
If you really need two backup copies of the whole screen you could GET
another one into the GP array.
PUT

All the different options of PUT can be used to recreate the area taken by
GET into the GP array at any screen position with any action. The top left
coordinates are the cursor position and the others are calculated from the
record of the size of the area (OX and GY).
P gives PSET

160

Chapter 12 Instant Keyboard Acee-SS' to Hi•Res Commands

2000 PUT(X, Y)-(X-GX, Y-GY) , GP , PSE
T
2�3 1 �3 SOUt·�D 25�.5 ., 1 : GOTO 1 [1[10

I gives PRESET (Inverse)
3900 PUT(X , Y)-(X-GX , Y-GY) , GP , PRE
:;ET
:39 1 �3 SOUt·�D 255 ., 1 : GOTO 1 �312H3

D gives AND
35[1�.1 PUT(:x: ., Y)-(::<-G::<., 'l-G'l) , GP., At�D
351�3 SOUND 25�.5 .. 1 : GOTO 10�3�1

O gives OR
3400 PUT(X ., Y)-(X-GX, Y-GY) , GP .. OR
3410 SOUt·m 255 , 1 : GOTO 1 (1(1[1

T gives NOT
:360[1 PUT< ::.:: .. 'l)-(>�-G::< ., 'l-G�f) ., GP ., t·�OT
:36 1 0 SOUt�(; 255 ., 1 : GOTO 1 �ZH.30

If the coordinates fall off the screen the recreation will be corrupted, so it
is best to use the backup routine first if you are close to the bottom or right
hand side.
Kill

If you want to abandon the current effort and PCLS press K. As this is a
permanent action which must not be called by accident certain safeguards
are built in. A non-destructive inversion of the top of the screen is given as a
warning, and K must be held down for 5 cycles within 6 seconds for a PCLS
to be carried out.
2700 GET(0, 0)-(255., 10) ., WM., G
27 1 0 PUT(0 ., 0)-(255., 1 0) , ,JM., PRES;ET
2720 IF CL=0 THEH T I MER=0 • CL=CL+
1 • ELSE CL:CL+ l • IF T I MER >:3•:l0 THE
N CL=0 • ELSE IF CL=5 THEN PCLS C2

161

Advanced Sound and Graphics for the Dragon Computer
• CL=0
.27:3(1 PUT(0) 0)-(255 ., 10 > ., l·�M) P:3ET
2740 GOTO 1 0[H3

When you press K you GET a band at the top of the screen into array
WM (warning mark), and PUT it back PRESET (inverted). The first time
through the TIMER is reset, the clear flag (CL) incremented by 1, and WM
PUT back PSET. If K is still pressed the TIMER is checked against 300,
and if this value is reached the clear flag is rr.set. If CL has counted up to 5
then a PCLS occurs.

Change colours
Nowt hat we have started running out of suitable keys we will ha veto use W
to indicate Which colours to use for foreground and background. As we
have no text available on the screen so far indications of what stage you are
at is given by moving inverted blocks across the top of the screen. The first
block is inverted towards the left of the screen· indicating that the fore­
ground colour is to be entered as Cl$. As we need to use the non- repeating
INKEY$ here the autorepeat must be disabled by POKE 135,0. Once the
foreground colour has been entered the original block is PUT back, an
inversion made on the right of the screen, and the background colour
entered as C2$. Finally this block is PUT back and the COLORs changed
by taking the VAL of C l$ and C2$ and DRAWing "C" + C l $.
:3000 GET(40, 0)-(5•3., l'3) ., PR., G
:30 1 0 PUH 40, 0)-(50., 1 0 ::, , F'R , PRE::;ET
:3020 FDR t·l= 1 TO 1 <:1(10 , t,E;·•:T t·l
:30:30 POKE 1 :35) [1
:3040 C 1 !f= It-lr'.E'l'!f • I F C 1 $=" ,.. THEt·l :3
040
:3050 PUT(40, 0 ::,-,: 50, 1 '3) ., F'R., P:,ET
:3060 GET0: 1 68, 0)-(178, 1 0) , F'R, G
:3070 PUT(1 68, 0)-(1 78, 1 0) ., PR., PRES
ET
:3080 C2!f= HlKEY!f • IF C2$=" " THEM :3
080
:3090 PUT(1 68, lcn-(1 78, 1 "1) , PR., PSET
:31 00 C ! =VAU C l $) • C2=VAL(C2$) COL
OR C l , C:2 • DRAW " C " +C: 1 $ • GOTO 1 0,:,0

Paint

Paint coordinates and colours are entered in a similar way, but as PAINT­
ing often causes unexpected results a backup copy is first automatically
made by calling the routine at 3700, and the Paint Flag is also set to I. The

162

Chapter 12 Instant Keyboard Access to Hi-Res Commands

cursor is set on the point to start PAINTing from, and Q pressed. A block is
displayed at the left, and the first colour entered. The second block indi­
cates the second (border) colour, and the final block asks for confirmation
of your decision. If PA$ is not Y then the PAINTing is abandoned.
2:30<3 I F PF=>3 THEH PF� t , GOTO 3700
28 1 0 GET(0 , 0)-(1 0 , 1 0) , PR , G
2c:2(1 PUT(0 ., 0)-(1 i3 ., 1 '3 > ., F"F: ., PRE:3ET
2C:30 FOR N•l TO 1 000 , NEXT N
284�:1 PCll<E 1 :35., �3
2C:50 C 1 $= It-H::E"-t'$ IF C U'= " " THEH i::
:::50
2:::r.;[1 PUT(0 ., 0)-(1 (1 .• 1 �3) ., PR ., P'.::ET
2870 GET(1 23 , 0)-(1 33 .. 1 0) .. PR , G
2C:C:0 PUTC 1 23 , 0)-(1 33 , 1 0) , PR , PRES
ET
:?c:%1 C2$= It-WE\'$, IF C:2$= " " THEt� 2
:,:90
2900 PUT(1 23 , 0)-(1 33 , 1 0) , PR , PSET
29 1 0 GET(245 .. 0)-(255 , 1 0) , PR, G
2920 PUT(245) 0)-(�:'.55 ., 1 (1)) P R ., PRE:3
ET
2930 PA$= lt-W:E\'$ ' IF PA$= " " THEt·l 2
si::::0
2940 I F PA$() " \'" THEN PUT(245 , 0)
-(255) 1 0) , PR , PSET : GOTO 1 000
2950 PAI MT(:�:: _. Y) _. VAL(C l $) ., VRL(C2$

2960 PUT(245 ., 0)--, 255 ., 1 0) , PR , p,:;ET
:29?0 PF::::��1 : GOTO 1 (1t:HJ

Arc
It is possible to form only an arc of a CIRCLE or ellipse if you define the
start and end P(!ints, but first the Width and Height must be defined as
described for ellipses.
400(1 I F CF=0 THEt-l 10<30
40 1 0 PUT(X0- 1 , Y0-1)-(XO+ l , YO+ l) ,
OC, PSET
4020 W:ABS(XO-X) H=ABS(YO-Y)
4030 FOR N=l TO 1 000 , NEXT N
4040 POf'..E 1 35, >3
4050 GEJ(1 0 , 0)-(1 5) 1 0) , PR , G
4060 PUT(1 0 , 0)-(1 5 , 1 0) , PF: ., PRESET

163

Advanced Sound and Graphics for the Dragon Computer

You can reach this routine from A but there is a practical problem in
indicating the start and end points by single keys, as even the keys O to 9
would only allow 10 different arc points. The actual values for start and
end points need to be between 0 and I and the following solution allows you
to enter easily decimal numbers via INKEY$. First the start value. Line
4070 checks IN KEY$ and if this is not empty then 4080 checks whether ST$
was CHR$(13) (= ENTER). If not ST$ is added onto the end of TI$ and
another ST$ taken. Thus numbers are added onto TI$ until ENTER is
pressed. In the same way the end point is built up in T2$ from FI$.
4070 ST$= It-WEY$ • IF :,;T$= " " THEM 4
�370
4080 IF ST$< >CHR$(1 3) THEH T 1 $=T
1 $ +ST$ • GOTO 4070
4090 PUT(1 0 , 0)-(1 5 , 1 0) , PR , PSET
4 1 00 GET(230 } 0)-(245} 1 [1)) PR ., G
4 1 1 0 PUT(23'3, 0)-(245 , 1 0 : . .. PR., PRES
ET
4 1 20 F I $= I NKE'/$ • IF F I $= " " THEM 4
1 20
4 1 30 IF F I $< >CHR$(1 :3) THEH T2$=T
2$+F l $ • GDTO 4 1 2'3

When both start and end points have been entered the arc is drawn.

4 1 40 PUT(230 , 0)-(245, 1 0) , PR, P8ET
4 150 C I RCLEC•:O, YO), l·L , H/eJ , VAL(T l
$) , VAL(T2$)

As you may want to add to this arc Q$ waits to see if you want A for arc
again. If so TI$ and T2$ are emptied but the shape of the CIRCLE is
retained as W and H are not reset.
4 1 60 Q$= r nKEY$ • IF 1;$=" " THE�! 4 1 6
0
4 170 I F Q$= " A " THEN T 1 $= " " • T2$= "
" • GOTO 4030
4 1 80 CF=0 • T 1 $= " " • T2$= " " • GOTO r no
0

SAVE/LOAD
Once you have completed your design then presumably you want to be able
to Save it so S leads to the SA VE/LOAD routine which dumps the contents
of the first four graphic pages to cassette as a machine code file which can
be reloaded later.

164

Chapter 12 Instant Key.board Access to Hi-Res Commands

33(.H) CL:3 F·e: J H T " :3HI/E OP LUf1[:, " • Hff"

UT 1)$ f f LEFH;(1;1$, 1 ::•= " :3 " THEt·l 33

1 0 EL:3E I F LffT'li(1).$., 1)"" L " THEN

3350 ELSE SCREEN 1 , SN • GOTO 1 000

33 1 0 F'P I tH " :,:H'•,•' E " • F'P I tH, , " F I LEHHt1

E" , HlPUT tlti'li
3320 CSAVEM NA$) 1 536 , 7679 , 6 1 44

SCPEEN 1 , SN GOTO 1 000
PR I N T " LOH[:, " · PR I NT , , " F ! LENHM

E " .: , HlF'UT Nfi�;

3360 SCPEEN 1 , SN CLOHDM NHI

:J3?0 (;OTO 1 OO[t

Drawing with the joystick

Although you can move around the screen with the cursor keys it is
sometimes more convenient to use this joystick routine which is called by J,
as you can then make diagonal moves more easily. The cursor key routine
is replaced by the joystick routine until one of the cursor keys is pressed
again. The joystick is used to control direction rather than absolute posi­
tion here (see earlier). The JOYSTK values for O and 1 are read into varia­
bles and a logic test against position limits used to update both X and Y.

2200 J0=JOYSTK< 0) , Jl=JOYSTK(1 l , X
=:�+(I H*< (J0< =20)-(J0= >50 l)) , Y='/+
(I N*C (J 1<=20)-(J1=)50 l l l

After limit tests a replica of the usual cursor routine is used and then a
test made to see if any key is being pressed.
2210 IF Y >YE THEN \'=YE ELSE IF '(
< \'S THEN Y=YS
2220 IF X>XE THEN X=XE ELSE IF X
<XS THEN X=XS
2230 GETC X-1 , '(- 1)-(X+ ! . Y+1) ., CU, G
, PUH :,:-1 , Y-1)-(X+1 , '/+1 :, , CU, PRESE
T , FOR tl= 1 TO 1tl • NEXT , PUT(X- L Y-1
)-(X+1 , Y+ 1 l , CU, PSET

If any key is pressed PEEK(337) is less than 255 and the joystick routine
is left.

2250 I F PEEK(337)(255 THEN 1000

165

Advanced Sound and Graphics for the Dragon Computer

If a key is not pressed then the joystick button is tested comparing
PEEK(65280) with 126 and 254. If the button is not pressed a Blank Move
is made but if the button is pressed a MOVE is made.

2260 IF PEEK(65280)< >254 AHD PEE
K(65280)0126 THEH DRAW" BM"+STR!li
< X)+" , "+STR!li< Y) , GOTO 2200 ELSE D
RAW"C"+STRS(Cl)+"M"+STRS(X)+". , "+
STR•< Y) • GOTO 2200
2270 GOTO 1 130

Entering character mode
The final single key command is @ which exits the drawing mode and goes
to an alternative mode in which preformed characters are displayed. D$ is
set to ''O" so that these characters are initially drawn from left to right (see
later).
2 1 00 POKE 135 ., 0 , C,$= " 0 " , GOTO 20

Character mode
Keycbeck and cursor
The scale factor for DRAW (S) is set to four times the cursor increment,
and INKEY$ tested.-A cursor is formed by GET and PUT as before, but
here it is a line instead of a box as the Y axis is of zero length. The flashing
cursor is repeated until a key is pressed and if this key is @ the program
goes back to the drawing mode.
20 S= Hl:t4 , C$= HU(E\'$, GET('.� ., 'r)-(;�+
I N, Y) , CU , G , PUT(X , Y)-(X+ I N , Y) , CU ,
PRESET , FOR M = 1 T O 1 0 , t·lEn t·l , PUT(
X , Y)-(X+ IN , Y), CU , PSET : I F C$= 11 11 T
HEH 20 ELSE I F C$= " I? " THrn 1000

The ASCII value of the last key pressed is now calculated and used in a
logic test against the arrow keys for cursor movement. A move of one
standard character unit is made for each left and right cursor key
movement, and a move of one and a half character units for each
movement of the up and down keys. This gives the correct spacing between
alphanumeric characters and lines. Once the X �nd Y limits have been
checked a Blank Move is made to the new oosition.
21 A=ASC(C$) , X=:�+((S:t2):t((A=8)-(
A=9))) , Y='/+((S:t2)*< (A=94)-(A= 10)
)) , I F '·,' >YE THEH 'r'='lE ELSE IF Y< '(
S THEN '/='rS
166

Chapter 12 Instant Keyboard Acces:s to Hi·Res Commands

22 I F :, n-,,:E THEt·l),=:<E ELSE I F :,,n;
S THEt·l :":=:,,:s
23 DRA�J 11 BM 11 +STR$(>=:)+ 11) 11 +STR!ii(\') ·
IF R > 3 1 Rt·l[) R< 9 1 THEtl GO:3U8 25 , :,,:
:::::,.�+(S) : GOTO 20 : ELSE 20

If the ASCII value of the key is not between 32 and 90 the program loops
back to 20, but if it is between these limits it goes to the subroutine at 25. On
RETURN from this character DRA Wing routine the X position is
updated.

Sorting the characters
Line 25 is a key line as it sorts keys between 32 and 90 by an ON GOSUB
according to the ASCII codes. Each of these subroutines DRA Ws a dif­
ferent character and the program is arranged so that the line numbers of
these subroutines correspond to the ASCII codes of the key pressed. For
example pressing A leads to line 65. The only key with a code between 32
and 90 which does not have a subroutine is @ (code 64) as this key has
already been used to return to the drawing mode.
25 DRAW'1 C 11 +STR$(C l)+ 1 1 A 11 +D$+ 11 S 1 1 +S
T�I$(S > = Ot·�(ASC(C$)-:.31)GOSUB:.32, 33)
34 , 35 , 36 , 37 , 38 , 39, 40, 4 1 , 42 , 43 , 44
., 45, 46, 47, 481 49 ., 50, 5 1 , 5 2 , 5:3., 5•L 5
5 , 56 , 57 , 58 , 59, 60 , 6 1 , 62 , 63 , 64 , 65,
66 , 67 , 68 , 69 , 70, 7 1 , 72 , 73 , 74 , 75, 76
, 77 , 78 , 79 , 80 , 8 1 , 82 , 83 , 84, 85, 86, 8
7 , 88 , 89 , 90 , RETURN
Character subroutines
You can DRAW any type of character you like in the subroutines, the only
proviso being that you must make sure that you finally make a Blank Move
to a standard point in the next character position. The examples given
(Table 12.1) include all the upper case letters and the numerals, together
with some other special characters. The characters are constructed on a 5
by 6 grid (Figure 12.2). If you want to define even more characters you can
include lower case and duplicate line 25 as 26 with higher ASCII codes. The
great advantage of using DRAW to produce characters is that these can be
of any size and shape and be scaled, coloured and angled at will. Of par­
ticular interest are the accent routines which replace the normal characters
on the jf, $, 'lo and & keys,

167

Advanced Sound and Graphics for the Dragon C,omputer

35 WAW " BM-7, -7E:38t1+4 , + 1 0 " · RETIJR
t·l
:36 DRAW"BM-4., -7H:38M+7., + 1 0 " • RETUR
t·l
37 WAW" BM-8 ., -7E2F2El'1+4, + 7 " • RETIJ
Rt·l
38 WAW'BM-6 , +WGE:1·1+7 , -3" • RETURt·l

and the copyright sign which replaces the !

33 C•RAW" BM+ 1 ., +(W3EU4HL3G[>4FBM+2 .•
-2LHERBM+4, +4" • RETURt·l

Figure 12.2 Letter A formed on 6 X 5 grid

II
The greater than (>) sign has been replaced by a larger design which

should be reasonably familiar to Dragon users (Figure 12.3). As this is
larger than the rest of the characters the X position is moved along further
than usual.

62 WAW " 8M+2 , +OR 1 7BM--4, +OHL6GE2R
4FH2L2GH48t1+6, +:3U5BM+2 ., +6E4 " • :•,=�(
+(:3tl . 5) • RETURt·l

Figure 12.3 An alternative character

Colour (Cl), scale (S) and angle (D)
If you look again at the start of line 25 you will see that each character is
DRA Wn in the current foreground colour, at the current scale and angle.
To change the foreground colour (Cl) or scale (S) you must jump back to
drawing mode and you may remember that D$ was set to "0" before

168

Chapter 12 Instant Keyboard Acces:s to Hi-Res Commands

entering character mode, so that ORA Wing proceeds from left to right.
Four different scales are available and these produce different sizes of let­
ters (Figure 12.4). Notice that line 32 sets the colour to C2 so that it
DRA Ws in background to produce both a space and a delete character
feature.

Figure 12.4 Different letter sizes

The angle can be updated in character mode by a two-stage process. First
a check is added for the ENTER key (CHR$(13)). If INKEY$ is not
ENTER then line 24 is excluded. If ENTER is pressed INKEY$ is checked
again and a warning SOUND made until another key is pressed. The O to 3
keys can now be used to change the angle of ORA Wing. Invalid keys are
rejected by looking at the VAL.
2:3 DRAW I I BM I I +STR$(::\)+ 11

·' " +STR$(y) :
I F A=13 THEtl 24 EL:,;E I F A>31 At·lD

A< 91 THEt� GOSUB 25 , :,-,:=>'.+(S:t.2) , GO
TO 20 ELSE 20
24 [>$= Hlt<EY$ ' SOUN[> 1 ., 1 , IF [:,$= " "
THEt-l 24 ELSE I F VAL< [:,$)>:3 THHl [:,
$= 1 1 11 , GOTO 2�.3 : ELSE 20

This feature is extremely useful in labelling diagrams as text can be writ­
ten in all four directions (Figure 12.S).

Figure 12.S Change of angle

(L

N O R t1 A L
0
0 -�

1J 3 H! 3 t1 N I

Resurrection
If you are unfortunatl! enough to try the impossible and hence crash the
program typlng SCREEN 1,SN:GOTO 1000 will usually put you back
where you were before your last move.

169

Advanced Sound and Graphics for the Dragon Computer

Written prompts

Now that you have the facility to produce text on the hi-res screen you
can easily change the 'block' prompts described earlier to actual written
messages. The message to be given is defined as M$ and then this is
sliced down one character at a time and sent through the normal cha­
racter drawing routine. We will put the slicing routine at 6000 and set
D$ = "O" to ensure that the angle command always gives normal text.
6[1>30 [>$=" 0" , I t-l=2 , FUfi t·l= 1 TO LEH(
M$ J • C$=MIDS(M$, H , 1 J GOSUB 25 • HEX
T H , i;:ETU,:tl

As a demonstration we will modify the PAINT routine. The easiest
way to recreate the screen after the prompts is to GET the whole of the
top of the screen into array WM.
281 0 GET< 0, 0)-(255, 1 0) ., �JM, G

Now we define the first message as M$, make a Blank Move to the
position you wish to write from, and go to the slicing subroutine.
2820 t1$= "COLOR l ? " • DRAW "Bt11 0 , 1 0
" • GOSUB 6000

When the value h'as been entered as before the top is PUT back.
2860 PUT(0 , 0)-(255 , 10 l, W1 , PSET

The other messages are dealt with in the same way, except that there is
no need to GET into WM each time so certain lines can be deleted.
2870 (det ete)
2880 t1$="COLOR 2?" • DRAW "BM50 , 1 0
" • GOSUB 6000

2900 PUT(0 , 0)-(255, 1 0) , Wt1 , PSET

29 1 0 (de lete)
2920 t1$= "PAINT Y/tl? " • DRAW "Bt1 1 00
, 10 " • GOSUB 6000
2940 IF PA$0"'i " THEt� PUT< 0, 0)-(
255, 1 0) , WM, PSET • GOTO 1 000
2960 PUT(0 , 0)-(255 , 1 0) , WM , PSET

Any other text message can be written onto the screen in the same
way.

170

Chapter 12 Instant Keyboard Access to Hi-Res Commands

LIST OF SINGLE KEY COMMANDS
Key

DRAWI NG MODE

cursor ke�s

shi fted cursor ke�s

2

3

4

sPacebar

L

R

N

B

F

C

Action

move cursor

draw w ith cursor

cursor i ncre�,ent

cursor increment 2

cursor i ncrement 4

cursor increment 8

leave mark

LI NE from �,ark

Rubout LI NE from �lark

LINE no-uPda.te from m1.rk

Box

F i t ted box

C I RCLE

et t iPse

171

Advanced Sound and Graphics for the Dragon Computer

172

E

G

GET

back u.P COP�

cl ear

p

D

0

T

K

w

Q

A

PUT PSET

PUT PRESET

PUT AND

PUT OR

PUT NOT

k i l l (c lear sere-en)

(must be held for 5 seconds)

cha·n9e col ou.rs

(f irst number is fore9round,

second nurnber is back 9rou nd)

PA INT

< Press twice, then enter Pai ·nt. c,, lour,

border col our , and ' Y ·' i f correct)

arc

s

j

@

Chapter 12 Instant Keyboard Accell to Hi-Res Commands

(first number is start, second number

is end, Press ' A' a9ain to continue

this arc)

CSAVE/CLOAD

JOYSTK

(Press a k e� to leave Jo�st ick mode)

enter character mode

CHARACTER MODE

cursor ke�s move cursor

enter chan9e an9le

(Press 0-3 to select an9le)

@ enter drawin9 mode

an� other ke� draw character

To recover fror� a crash t�Pe ,

SCREEN 1 , SN , GOTO 1000

173

Advanced Sound and Graphics for the Dragon Computer

Table 12.1

SAMPLE CHARACTERS

�b6��;��;J;�f�J�1i< �HjRH6RD6RU6F:l)6
33 DRAW 8M+ 1 ., +0R3EU4HL3GD4F8M+2,
-2LHE,:8M+4 , +4" , RETURtl
34 C•RAW" 8t1+0., -6D811+2, +0U811+4, +6"
• RETU,:H
35 [:,f;:Al," BM-7, -7E38M+4, + 1 0 " , ,:ETUR

36 CoRAW" BM-4 ., -7H38M+?, + 1 0 " • RETIJR
t·I
3? CoRAW " BM-8 ., -7E2F28M+4, +?" • RETU
Rtl
:38 DRAl•J " BM-6, + ! DGE•M+? , -3 " • RETIJRt·I
39 C•RAW"BM+0 , -6D8M+4 , +5" RETURtl
40 [,e:AW"8M+2 , +0HU4E8t1+4, +6" • RETU
.:t-1
4 1 DRAW"8M+1 , +0EU4H8M+5, +6 " • RETU
Rt·I
42 [)RAW" 8M+0, - 1 E48M+0, +4H48M+8 , +
5" • RETURt·I
4:3 [)RAW"BM+0., -3F:4L2U2D48M+5., + 1 " ·
f;:ETURt-1
44 DRAl," BM-1 .• +0DGBM+4, -2" • RETURt·I
45 DRAW" 8MHl ., -3R48M+4 .• +3" , RETURtl
46 r,RAl•J " 81-1-1 , +0UBM+4 , + 1 " , RETURH
4 7 DRAW" 811+0, -1 E4811+4 , +5 " , RETURt·I
48 DRA,J" 81-1+0, - 1 FR2EU4HL2GD48t•1+'3 ,
+ l " • RETURH
49 DRAWBM+ 1 ., +0U6G8M+6., +5" , r;:ETUR
t·I
50 C•RAW" 811+4, +OL4UER2EU2HL2G8M+8
.• +5" • RETURt·I
51 DRAW Et·l+(t , - 1FR2EUHL2R2EUHL2GB
11+8 , +5" • RETURt·I
52 DRAW" BM+:3, +OU6G3":48M+4, +:;: " • RE
TURt·I
53 DRAlJ" BM+O, -1 FR2EU2HL3U2,:4BM+4
., +6" • RETURtl
54 DRAW 8M+(1 .. -·2ER2F[,GL2HU4ER2F8M
+4, +5" • RETURH
55 DRAW" 81-1+2 ., +OU2E2U2L48M+8, +6" •
RETURt·I
174

Chapter 12 Instant Keyboard Access to Hi-Res Commands

56 DRAW" BM+ 1 , +0F:2EUHL2HUER2FDGL2
GDFBM+ 7 ., +0" • RETURt1
57 Dl<:A,J " BM+<J ., -1 FP2EU4HL2GDFR38t1+
4, +3" • RETURr1
58 c,RAW "BM+0, -5D8M+O., +2C,8M+4, + 1 "
• RETURN
59 C-RAl� 1 1 8M+t1) -5DBM+0 ., +2DG8M+5 ., +0
" • RETURtJ
t,I:! RETURH
6 1 DRAWBM+0., -2R4E:t·1+<) , -2L48M+8 ., +
4" • l<:ETUl<:M
62 DRAW"Bt1+2 , +0Rl 7Bt1-4, +0HL6GE2R
4FH2L2GH4E:t·1+6 , +3U5E:t•1+2, +6E4" • :•'.=>(
+(sn) ' RETURN
63 [>RAW" BM+2, +0UBM+O, - 1 UREIJHLG8t1
+7 ., +5" · RETURtl
65 C•Rf1W" IJ5EF:2FD5U3L48t1+8 · +::: " • RET
URt1
66 C•RAfJ " U61<:3FDGF[:•CL3U3R:3BM+5 , +3"
• RETUF:t-1
67 DF:A,J " BM+ l , +0HU4ER2FHL2GD4Fi<:2E
BM+4 ., + 1 " • RETURM
68 DRAW" IJ61<::3FD4CU8M+8., +0" • RETUR
tl
69 [:•RAfJ" F:4L41J:31<:4L41J:3R4Bt1+4, +6" • R
ETUPt·J
70 [,RAW" IJ:3R4L4U:3R48M+4 , +6" • RETUR
t·J
7 1 DRAW" Bt1+ 1 , +0R2EIJLRC•GL2HU4ER2F
8M+4., +5" • RETURtl
72 DRAW" IJ6D:3R4U'.3C>68M+4 ., +0" • RETIJR
t·J
73 DRAW"8M+ l , +OR2LIJ6LR28M+4 ., +6 " •
RETIJRt·J
74 DF:AW"8M+[1 .. - 1FP2EIJ58M+4, +6 " • RE
TIJRt·J
75 [,RAW" IJ68M+O., +3RE�'G3F:38M+4, +O "
• F:ETURt·J
r ,, DRA,J " P4L4U68M+S, + 6 " • RETIJRt·J
77 Dl<:AW" IJ6F2EW6BM+4, +0" • RETUF:M
78 DRAW U6DF 4DIJ6Bt1+4 ., +6" • RETURt·J
79 [,RAW" BM+ 1 , +1JR2EIJ4HL2@4F8M+ 7 ,
+ 0 " • RETURtl
80 DRAW" IJ6R:3FC,GL:38t1+8, +:3 " • RETUl<:N
8 1 DRAW " BM+ l , +0R2EU4HL2GMF8t1+ 1 ,

175

Advanced Sound and Graphics for the Dragon Computer

-2F28M+4 , +0" , RETURt·l
82 DRAW" U6R3FDGL3RF38M+4, H)" · RET
URt·l
83 DRAW" Bf1+0 ., - 1 FR2EH4ER2F8J1+4 , +5
" , f<:ETURt�
84 DRAW"Bf1+2, +0U6L2R48M+4 , +6 " , RE
TURt·l
85 DRAW" BM+O , -6D5FR2EU58M+4 ., +6 "
RETURN
86 DRA,J " BM+O, -6D4F2E2U48M+4 , +6" ,
RETURt·l
8? DRAW" BJ1+0 ., -6D6E2F2U68f1+4, +6" ,
RETURt·l
88 DRAW"UE4U8M+0, +6UH4UBM+8 , +6 " ,
RETURt·J
E:9 C•RA,J " E:M+2 , +0U4H2F2E2E:f1+4 , +6 "
RETURt·l
90 C•RAW" R4L4UE4UL48M+8, +6" , RETUF:
t-J

176

CHAPTER 13

GETting and PUTting Hi-Res Characters

Although the ORA W routines given above can be incorporated into any
program they are somewhat slow in operation and you can quite easily
'beat' them if you type quickly. However, once you have drawn them on
the screen you can save them and deal with them much faster later with
GET and PUT.
Transferring characters between programs
Once you have created your characters it is obviously useful to be able to
transfer these between programs, so that you do not have to retype them,
but can build up a whole library of alternative sets instead. It is possible to
define each character as a real string by changing each line to:

. . . . A$ - " .

instead of
. . . . DRAW " " etc

and then to save all these as an ASCII file on tape.
Saving characters as machine code
However it is actually much simpler to draw them across the top of the
screen and then save this screen area as a machine code dump on tape. As
an example we will set out the example letters and numbers which we
defined earlier at the top of the screen and then save them. The screen is
cleared and the colour set reversed to give black characters on a light
background as these are easier to read. (If you want to save them as white
on black just use PCLS instead of CO LOR 0, I :PCLSI). We can set up the
screen position by a Blank Move and then jump into the normal character
drawing subroutine to lay out the letters and numbers in a suitable format.

10000 PMODE 4 , 1 , SCREEN 1 , 0 , COLOR
0 , 1 , PCLS! , X=! , FOR C=48 TO 57 , DRA
W" 8M" +STR$(X)+" , 7 " , GOSU8 25 , X=X+
? , NEXT C

177

Advanced Sound and Graphics for the Dragon Computer

100 1 0 FOR C=65 TO 90 , DRAW"Bt1" +STR.
$(X)+ " , 7 " , GOSUB 25 , X=X+7 , NEXT C
10020 CSAVEM " CHARS " , 1 536 , 1 722 , 22
4

The stan position for the first character is coordinates 1, 7, and each
subsequent character is seven pixels to the right of this. C values of 48 to 57
define the numbers and 65 to 90 the letters.

In PMODE 4 there are 256/8 = 32 bytes on each line and we have only
used the top seven lines so we need to CSA YEM 224 bytes to save all 36
characters. As that works out at less than seven bytes per character you can
see that it is a very economical method, and you will also notice that
machine code saves quickly.
Loading the characters and setting the screen
Characters which have been dumped on tape in machine code by CSA YEM
as above can easily be recovered by CLOADM and used to produce a
superior text display. For optimum visibility use PMODE 4 and reverse the
COLOR to give black letters on a green (or buff) background.
10 PMODE 4 , 1 • SCREEN1 , 0 • PCLS! , COL
ORB, t , CLOADM

'fhe characters will reappear in a single line across the top of the screen
(Figure 13.1).

Figure 13.1 Reloaded characters
O1 � 8 4 5 6 7 8 9 A B C D E FG H I J K L M N O P Q R S T U U W X T Z
Dimensioning the arrays
Before you GET all the characters you must DIM suitable arrays. Unfor­
tunately that normally means a lot of repetitive typing as you cannot alter
line numbers on the Dragon or switch the name of an array in GET and
PUT. (In fact we have found a devious way of getting around that prob­
lem, but as it is not very easy to understand we have left it until later! If you
want to become really good with graphics make sure you understand how
this method works before trying the alternative.) The size of each array is
only ONE element as the 5 by 7 matrix needs only 35 bits. Each array is
named as C plus the actual character-and in addition a blank array (BL) is
also DIMensioned.

20 D I MC0(1) , D I MC 1 (1) , D I MC2(1 l • D I
MC3(1 l , E> I MC4(1 l • D IMC5(1 l , D IMC:6(1

178

Chapter 13 GETting and PUTting Hi-Res Characters

l • D I MC7(1 J • D I MC8(1 J • D IMC9(1 J • D I M
C W 1 l • D IM CB(1) D l t1CC(I) • [>l t1CC•(I l
• DI MCE(l l • DI MCF(l) • D I MCG(l) • D I MC
H(1 l • D I MC I C 1) • D I MC.J(1 l • D IMCK(1 J •
D IMCL(l) • D IMC�(l l • DI MCN(l l
30 D I M DU(l l • D I M CCK I J • D I MCP(l l
D IMCQ(l l D IMCR(l l • D I MCS(l l • D I MCT
(l l • D IMOY l l • D IMCV(l l • D IMClK l l • D
I MCXC I J • D I MCY(l l • D IMCZ(l l • D I M BL
(1)

GETting the characters
Appropriate variables must now be set according to the size and spacing of
the characters to be picked up. X and Y set the start coordinates, S is the
step between characters on the screen, and W and H the actual Width and
Height of the characters.
40 :•,= 1 , 'i=0 • S=7 • �1=5 • H=7

All of the upper-case characters and the numbers can be fitted onto the
top screen IiJle so now you just need to GET each character, stepping the X
coordinate by S each time.
1 0fj GET(X, 'l)-(:��+W) �r+H), C0 ., G : X=f-:+

s
1 20 GET(X , Y)-(X+W, Y+H) , C2 , G : X=X+
s
130 GET(X , Y)-(X+W , Y+H) , C3 , G : X=X+

s

s
160 GET(><, Y)-(>�+�J ., Y+H) .• C6) G : X=X+
s
1 70 GET(X) Y)-(X+W , Y+H)) C? , G , X=X+
s
1 80 GET(X , V)-(�:+�J J �1'+H), C8) G : X==>-�+
s
190 GET(X , Y l-C X+W , Y+H l , C9 , G • X=X+

179

Advanced Sound and Graphics for the Drago1t Computer

s

2 1 0 GET(X J Y)-(X+W , Y+H) , C8 , G : X=X+
s
220 GET(X, Y)-(XHJ, '/+H) ., CC, G •)<=>(+
s
230 GET(>(, '/)-(>(+W ., Y+H l , C[), G • X=X+
s
240 GET< :-,:: , �1' >-(::-=:+1,,L Y+H) , cE ., G : x=::-::+
s
250 GET(X , Y)-(X+�J, Y+H), CF., G =)-.:=>::+
s
260 GET(X, 'r')-(:x:+�J, �r+H) , CG ·' G = x=:X:+
s
270 GET(X , Y)-(X+W, Y+H) , CH , G : X=X+

280 GET(:i-.-: , Y)-(:�+l•J ., Y+H) .. C I , G = :i<=�-::+
s

290 GET(:X: 1 'l)-(X+l,J ., Y+H) , CJ ., G : >::=::.::+
s
:300 GET(�<1 Y)-(:=<+l·J ., 'l+H) , CK., G : X=::<+
s
:3 1 0 GET(X, Y)-(:�+fJ, Y+H) ., CL G • l<=X+
s

320 GET(X , Y)-(X+W, Y+H) , CM , G : X=X+
s

3:30 GET(:-,:: , '1')-(::.::+VL, 'r'+H) , C:t-� , G : X=X+
s
340 GET< X, '()-(X+W , Y+H l ., CO, G • X=X+
s
350 GET(:x: J 'i)-(�-,:+w ·' Y+H) 1 CF' ·' G : x=::<+
s

:360 GET(;:: ·' 'i)-(::<+VJ ·' Y+H) , CG! ·' G : X:::�<+
s
370 GET(X, Y)-(X+�J, Y+H) , CR., G ,)��:-,::+
s
380 GET(X , Y)-(X+W, Y+H) , CS , G = X=X+
s
390 GET(K , Y >-(X+W , Y+H l , CT , G • X=X+
s
400 GET(X , Y >-(X+W , Y+H) , CU , G = X=X+
s
4 1 0 GET(>L '/)-(:x:+W, '/+H l ., C\I ., G · X=>(+
s

420 GET(X , Y l-(K+W , Y+H l , CW, G • K=K+
180

Chapter J3 GETting and PUTting Hi-Res Characters

:;
4:30 GET(:=< J �()-(X+�L 'y'+H L ex., G : X==X+
s

440 GET(X> 'r')-(->::+W., Y+H)J CY J G : X==:�+

Setting the screen format
Once all the characters are safely in their arrays the screen can be cleared,
and new variables set up to control the screen format. X and Y are the start
coordinates, S is the step along the X axis, T the step along the Y axis, and
XS, YS, XE and YE the limit coordinates values for X and Y axes.
Although the actual size of the characters is fixed S controls the amount of
space between characters on the X axis, and hence the number of cha­
racters per line. T controls the amount of space between lines of characters,
and hence the number of lines which can be fitted on the screen. If only part
of the screen is to be written on then the values of XS, YS, XE and YE must
be modified. The combination of values given produces a matrix of 42 by
24 characters (a total of 1008 (almost double the number on the normal
Dragon text screen). Although it takes several seconds to fill the arrays
initially these are retained as long as you do not use RUN. If you crash the
program make sure that you restart it by GOTO.
500 PCLS = X==2 : '(==0 : 8==6 = T=8 : XS=2 : XE
=25:�! : VS=0 =' YE= 1 9 1

Cursor and keycheck
K$ is read from INKEY$ and a flashing cursor produced, in this case by a
double PUT of the BLank array with NOT to invert the screen twice. The
first PUT, NOT reverses the state of all points in the area, and the second
PUT, NOT reverses diem again so they are b.ack where they started. When
a key is pressed the ASCII value is taken and if this falls above or below the
code for the present characters the program jumps on to line 1500.
5 1 0 K$= rnKE'/$, PUT(X , Y)-(XHL '/+H)
• BL , t,OT , PUT(:� , '/)-(:•:+l•L '/+H) ., BL ., t,O
T , J F K$= " " THEt-l 5 1 0 ELSE K=ASC(K
$) , IF K<47 OR 091 THEt, 1 500

The other keys are sorted by an ON GOSUB related to their codes.Six of
the missing characters with codes between those of the numbers and
upper-case letters jump back to the INKEYS check, but @ goes to another
routine at 1610.

181

Advanced Sound and Graphics for the Dragon Computer

520 ON K-47 GOSUB 1000, 1 0 1 0 , 1 020
, 1 030, 1 040, 1 050 .. 1 060 .. 1 0n, .. 1 080, 1
090 , 5 1 0 J 5 1 0 , 5 1 0 , 5 1 0 , 5 1 0 J 5 1 0 J 1 6 1 0
, 1 100, 1 1 1 0 , 1 1 20, 1 1 30 ., 1 1 40, 1 1 50, 1
1 60 , 1 170, 1 1 80, 1 190 ., 1 200, 1 2 1 0 , 1 22
0 , 1 230, 1 240 , 1 250, 1 260, 1 270, 1 280,
1 290, 1 300, 1 3 1 0 , 1 320 J 1 330, 1 340, 1 3
50

PUTting the characters
There is a corresponding PUT, PSET subroutine for each character and
the program then RETURNs. You can save yourself some typing if you
CSA VE the program so far, delete everything except the GET lines, and
then append your program back on itself. The procedure for appending is
first to PEEK at locations 27 and 28 and then POKE location 25 with the
number in 27 and location 26 with two less than the.number in 28. This sets
the 'start of BASIC program' pointer above the end of the program left in
memory ,and you can safely CLOAD your other COPY on top of this. You
now RENUM it above the original lines and if you then POKE 25,30 and
POKE 26, 1 you will rese.t the start pointer back where it was and find both
sets of lines form one program. You can now edit the copies of the GET
lines to convert them into PUT lines.

1 000 PUT(:�. ''()-(X+w, Y+H), C0, PSET ,
RETURN
1 0 1 0 PUT(X, Y)-()(+W ., Y+H), C l ., PSET ,
RETURfl
1 020 PUT< ,:, Y)-(:":+1•L 'l+H) , C2, PSET ,
RETURl·l
1 030 PUT(:,: , Y)-(XH,, Y+H) , 0, p,;ET ,
RETURt,
1 040 PUT(X, Y)-()�+W, Y+H), C4 , PSET ,
RETURfl
1 050 . PUT< X, Y)-(r:+fl , 'l+H), C:5 , PSET '
RETURl·l
1 060 PUT(>(, Y l-(X+W ., Y+H) , C:6, PSET ,
RETURt,
1 0?0 PUT(X, Y)-(X+fl. 'r+H) , C7, PSET ,
RETURl·l
1 080 PUT(X , Y)-(X+W , 'l+H) , C:8 , PSET ,
RETURN

182

Chapter 13 GETting and PUTting Hi-Res Characters

1090 PUT(X , Y)-(X+W, Y+H) , C9 , PSET :
RETURt·l
1 100 PUT(;,, , 'i)-(�:H,J.. Y+H) .. CA ., PSET •
RETURt4
1 1 10 PUT(>: , 'i)-(;x:H� , Y+H) ., CB, PSET •
F:ETURt·l
1 1 20 PUT(X , Y)-(X+W , Y+H) , CC , PSET
RETURt·l
1 1 20 PUT(X , Y)-(X+W , Y+H) , CD , PSET :
RETURt·l
1 1 40 PUT()<; , Y)-(:,;+�L Y+H) , CE., PSET •
F: ETURt·l
1 1 5•3 PUT(:,: , 'i)-()<+l•J ., Y+H l .. CF, PSET •
RETUF:t-l
1 1 60 PUT(X, Y)-(::.::+�J , Y+H) ., CG, PSET :
RETURt·l
1 1 70 PUH X , Y l-(X+l-1 , Y+H l , CH ., PSET •
RETURt-l
1 1 80 PUT(X , Y l-(X+W , Y+H) , C ! , PSET •
RETUF:t·l
1 1 90 PUT()'. , Y)-(X+IJ.. 'i+H) ., C.J, PSET •
F:ETURt4
1 2(1�1 PUT(:x: · ' Y)-(::-::+w, 0l'+H) ·' er: , PSET :
RETIJRt·l
1 2 1 0 PUT(X , Y >-(X+W , Y+H) , CL , PSET ,
F:ETURtl
1220 PUT< ;"; , \')-(:�+�J.. \'+H) , CM .• P:,ET •
RETURt·l
1 23(1 PUT(;,; , Y)-(X+l•J .. Y+H) , Ct-l, PSET ·
RETURt4
1 240 PUT(X , \')-(X+W , Y+H) , CO , PSET ·
RETURtl
1 250 PUT(:i-L Y)-(:x:+�L �,1+H) , CP ,·PSET '
RETUnl
1 260 PUT<)'. , 'i)-(:�+�L Y+H) , CO, PSET •
RETURt·l
1 270 PUT(::-: : ., Y)-()<+�J ., Y+H) ., CR , PSET ·
RETURt·l
1 2t:0 PUT(X, �()-(:}�+�L Y+H) ., CS., PSET =

F:ETUF:fl
1 290 PUT(X , Y)-(X+W, Y+H) , CT , PSET •
RETURtl
1 300 PUT(X , Y l-(X+W , Y+H) , CU, PSET ·
RETURt·l

183

Advanced Sound and Graphics for the Dragon Computer

1 3 1 0 PUT(X , Y)-(X+W, Y+H) , CV, PSET •
RETIJRM
1320 PUT(>�, l')-(�<+W 1 Y+H) ., C�J, PSET =

RETURt·l
1 330 PUT(::-:; , 'l)-(�<+W., V+H) ., C::< 1 PSET ·
RETURt·l
1 340 PUT(X , Y)-(X+W , Y+H) , CY , PSET
RETURt·l
1350 PUT(X, Y)-(X+W , 'i+H)., CZ., PSET =

RETURM

When you RUN this program you will no doubt be impressed by the
speed of GET and PUT which appear to operate instantaneously, and
certainly faster than you can type. This speed is the main advantage of this
method of character generation, but of course this must be set against the
impossibility of scaling and colouring the characters, or of changing their
angle on the screen. It is chiefly a useful method of getting a reasonable
amount of text on the screen at one time. Do not be tempted to save some
typing by using GET without graphic detail and PUT without action as we
have found that this theoretically desirable combination does not work
very effectively in practice. There should be a speed advantage over the
method described here, but in practice we have found thafit actually tends
to crash with mysterious FC ERRORs if you type fast.

Once a character has been PUT the X position is stepped on. If the limit
of the X axis has been reached (X> XE) then the X coordinate is reset to the
start position but the Y coordinate is moved down to the next line. If the
end of the screen is reached suitable action must be taken.
540 X=X+S • IF X>XE THEM X=l • Y=Y+T
, IF 'r' > '-/E THEt·l 2000
550 GOTO 51 [I
2000 STOP

Moving on
The spacebar (code 32) produces a blank move to the right, and this line
also PUTs the BLank array back with PRESET at this point. This has the
effect of erasing the screen at the current position so it is also used for
deletion. Note that this array was never filled so that PRESET rather than
PSET is appropriate.

1 500 IF 1<=32 THEN PUH :� , '-/)-(�'.+fl ,
't+H) , 8L, PRESET =)<=�S::+S = GOTO 5 1 0

184

Chapter 13 GETting and PUTting Hi- Res Characters

The arrow keys can also be used to move around the screen in all four
directions.
1 5 1 0 I F 1<=8 THEM)<=>l-S , GOTO 1 560
1 520 IF 1<=9 THEM X=X+s , GOTO 1 560
1 530 IF t'.=94 THEM 'r'='i-T , GOTO 1 56
0
1 540 IF I<= 10 THrn \'='/+ T , GOTO 1 56
0
1 550 GOTO 5 1 0
1 560 IF X<XS THEN X=XS
1 570 IF X)XE THEN X=XS , Y=Y+T
1 580 I F 'l< YS THEM Y='r'!3
1 590 I F Y >YE THEN Y=Y-T
1 600 GOTO 5 1 0

Another case
1 f you want true lower case you will have to load more characters and
duplicate all the GETs and PUTs, but an alternative inverse case can be
produced very easily (Figure 13.2). If you want to move into inverse cha­
racters just press @ which leads to line 1610 which toggles between the two
cases by setting a flag (FL).
1 6 1 0 I F FL= 1 THEt, FL=0 , RETURt, EL
SE FL=! , RETURtl

Figure 13.2 42 x 24 display

TH E I S At,l E:,At1PLE OF TEXT PRODUCED Ot,l THE
H I GH RE:,OLUTIOt! S:CREEts BY GETT I NG AND
PUTT HlG CHAF:ACTERS STORED AS: A MACH lt,E
CODE FI LE OF THE GRAPH I CS PAGES 0.l TAPE
01 2345678901 2345678:301 2:315678901 2345FS78801
rn TH I S: PARTI CULAR FORt1AT THERE ARE
FORTYrno CHARACTERS: Ofl A L H lE At,lD rnEmY
FOUR L i t4ES ON THE SCREEN

Another line is now slipped in which PUTs the Blank array over the
current character with NOT, thus inverting all the screen points.
530 IF FL= 1 THEt,l PUTOC 'I)-(�;+•J, Y
+H+ l), BL, t,lQT

185

Advanced Sound and Graphics for the Dragon Computer

More or less characters
The 42 by 24 character display described is the largest that can be comforta­
bly dealt with (Figure 13.2). The space between characters can be reduced
by droppingS to 5, which gives 51 characters per line (1224 per screen) but
this is pushing things very close to the limit {Figure 13.3). Increasing S t.o 7
reduces the number of characters per line to 36 (Figure 13.4) and if S is 8
you are back with the usual 32 characters per line of the Dragon text screen,
although as there are still 24 lines you have 768 characters on the screen
rather than 512. There must obviously be a compromise between legibility
and quantity and with this technique you can make your- choice according
to external factors.
Figure 13.3 51 x 24 display

01 ;94$789)1 234%7&.=t:rl 234""J3?cl:CO 234"'.:.67&.'0 29'1%?.=a:1
rn T1-E EXTF.81= CRSE A rn-:rru1 CF FIFrn:t-E
a-mFCTEF.$ CfH EE FITTED mro TH: 9:ff:Bi FL TI-OJ::H
L.EGIBILirr §Lfffi;:: Si:t·Sttff IF TH: HEP SIZE IS
F.EJJ:s:J THb Fff1I

Figure 13.4 36 x 24 display

0 1 �245B7990 1 234567890 1 2345S7890 1 2345
E\JEM TH IS 1-l I DEL Y SPACED 88 COL IJM t·l
FORMAT HAS 2i L I MES ON A SCREEM AMO
THEREFORE 88i CHARACTERS PER SCREEM
ltl§IEBD OF

_
THE NORMAL 5 1 2 ON THE

lliiil:!l!III TE :,: T :; C Ii: EE t·l

186

CHAPTER 14

Working on a Grid

Although it is possible to build up freehand designs on the screen some
form of grid system gives a very useful guide when you want to make sure
that your figure fits a particular format. This is very important when you
want to define character sets or frames for animation. The grid system
described here is a much more powerful derivative of the paper 'plotting
chart' idea that makes rubbers and Tippex redundant.

Making your choice
Before we can build up a grid on the screen we must decide what PMODE
and colours to use, and what size, shape and scale the grid will be.
20 CLS , PR ! NT " PMODE" ; , I NPUT PM , PR
I NT " COLOR SET " ; , I NPUT CS , PRINT " F
OREGROUt4D" ., I NPUT Ql , PR INT"BACKRO
Ut4D" ; I NPUT Q2 , CLS , PRitH"GRID W I D
TH" ; ' I NPUT ,J , PRitH "GRID HEI GHT " ;
, I NPUT H ' PRINT " SCALE " _: , I NPUT SX

Forming the grid
Now to set up the screen and define the start position (XS, YS) of the grid.
30 PMODE PM, 1 , SCREEN L CS , PCLS Q
2
40 XS= 1 0 • YS=50 • SY=SX

XS = 10,YS= 50 starts the grid about one quarter of the way down the
left.hand side of the screen, slightly away from the left edge. For each grid
element to be square the scale factor for the Y axis (SY) must be the same as
the scale factor for the X axis (XS) which you entered.

The end coordinates for the grid (XE, YE) are calculated by multiplying
the width of the grid requested (W) by the X axis scale factor (SX), and the
height of the grid requested (HJ by the Y axis scale factor (SY). A check
must then be made to ensure that the calculated area will fit on the screen.

187

Advanced Sound and Graphics for the Dragon Computer

If this check fails the program RUNs again. The current screen position
(XP,YP) is set to the grid start (XS,YS).
50 XE=XS+(SX:t.W) , VE=VS+(S'ttH) ' �'.P=
XS , VP='lS , IF XE> 190 OR ','E > 1 80 THE
N RUil

The specified limit of 190 for XE leaves a clear area to the right of the
screen. For test purposes choose PMODE 4, 1, foreground 1, background
0, width 10, height 10, scale 10.

The actual grid can now be drawn by a series of LINEs between start and
end, spaced the scale factor apart.
60 COLOR Q 1 , Q2 , tl='i'S , FOR t1=XS TO

XE STEP SX , L I t·lE(M ., t·l)-(M , N+('lE­
'lS)) , PSET , t!EXT M , M=XS , FOR N=YS
TO 'i'E STEP S'(, L INEOL N :H M+(XE,­
)(S), N), PSET , NEXT N

Flashing cursor
You need a cursor to indicate your position in the array, and as this is
formed by PUTting a blank array (B) this must be dimensioned first.
10 D I M B(1 0)

The actual flashing cursor is formed by PUTting the blank array at the
current screen position twice with NOT. The first NOT inverts that sector
of the grid and the second inverts it again to produce the original display.
80 FL=5 , FOR R=l TO 2 , PJJT(XP, 'i'P)-
(XP+SX, VP+S'l) , B , �lOT , FOR T= 1 TO R
''FL , ME,:T T , NrnT R , I F PEEK(:3:37)=2
55 THEN 80 ELSE A=PEEK< 1 :35)

As long as no key is pressed (PEEK(337) = 255) this sequence repeats. To
make the actual state of the grid sector under the cursor easier to see there is
a timing loop which is related to whether this is the first (R = 1) or second
(R = 2) NOT. The rate of flashing is also linked to a variable (FL) which has
profound effects as the time delay calculation is exponential (Rf'L). A
value of 5 for FL produces a reasonable effect. When a key is pressed the
value of PEEK(l35) is read into A.

188

Chapter U Working on a Grid

Moving round the grid
The cursor keys control movement, and limits are tested so that it is not
possible to leave the grid.

160 XI=((A=B)-(A=9))
1 70 Y I =< < A=94)-(A= 10))
1 80 XP=XP+(X U:SX) , 'l'P=YP+(Y U:SY)
190 IF XP>XE-SX THEN XP=XE-sx , Go
TO 80 ELSE IF XP<XS THEN XP=xs , G
OTO 80
200 IF YP>YE-SY THEfi YP=YP-SY , GO
TO 80 ELSE IF \'P< YS THEN YP=YS , G
OT080
2 10 GOTO 80

Note that the size of the move is related to the scale factors (SX and SY).

Filling the grid and changing your mind
To fill in sectors of the grid we use another array (W) which is originally
filled with the contents of the screen at the start coordinates.

10 D IM WC 10) , D IM 8(1 0)
70 GET(XS, Y S)-(XS+SX, YS+SY) , �J, G ,
POKE 1 35 , 0

(The POKE 135 ,0 at the end is to cancel autorepeat when a redraw of the
grid is called later.)

The key code for filling (32) is the space bar, which was-chosen as this is
the most frequent request.

100 I F A=32 THEN PUT< XP , YP >-(XP+
SX, YP+SY), W, PRESET , GOTO 80

As W is PUT back PRESET it inverts the display. The program then
loops back tothe cursor routine.

To remove a filled block from the grid the same array is PUT, PSET if
"X" is pressed.

1 10 I F A=88 THEN PUT< XP, YP)-(XP+
SX, YP+SY) , W ., PSET , GOTO 80

Making a 'real' copy
The most valuable applications of this program are creation of characters
and animation frames, so we need to be able to transfer our ideas from the
grid to the actual screen. This can be done by PSET and PRESET of appro-

189

Advanced Sound and Graphics/or the Dragon Computer

priate points and a miniature copy produced to the right of the grid from
coordinates CX, CY.
40 XS= 1 0 , YS=50 , SY=sx , FL=5 , CX=200
, cy=90 , xc=cx , yc=cY

The current position is XC,YC and this is only updated if the move was
within the grid as line 210 is only reached after valid moves.
210 XC=XC+XI , YC='/C+Y I , GOTO 80

PSET and PRESET of XC, YC are added to the previous fill and erase
lines.
1 00 IF A=32 THEN PUT(XP, YP)-C�P+
SX, YP+SY) , W , PRESET , PSET(XC , YC) , G
OTO 80
1 10 IF A=88 THEN PUT(XP, VP)-(�;p+
SX , YP+SY) , W , PSET , PRESET(XC , YC > , G
OTO 80

If you RUN this again you will see that all your actio1.1s on the grid are
now mirrored in a smaller version to the right of the screen.
Storing the copies
When you have built up a satisfactory copy you can store it at the top of the
screen by pressing ''@''. This GETs the copy at the right of the screen into
array CH and PUTs this back in the top quarter.
1 0 DIM W(1 0) , D IM 8(1 0) , D IM CH(50
0)
40 XS= 1 0 , 'fS=50 , SV=SX , FL =5 , CX=200
, cY=90 , xc=cx , yc=cY , c 1=0 , c2=0
120 I F A=64 THEN GET(CX , Cn-ccx+
W, CY+H) , CH, G , PUH Cl , C2)-(Cl+W , C2
+H) , CH, PSET , Cl =C l+W , GOTO 60

The initial PUT coordinates are predefined as C I , C2 and the X axis
position (Cl) is moved across by the number of units in the width of the
grid (W) after each PUT,

As this routine returns to line 60 it redraws the grid but does not clear it.
This is very useful if you want to make a series of frames for animation (see
later). When the grid is redrawn the gaps between blocks disappear so that
the status is obvious.

190

Chapter 14 Working on a Grid

Starting again
Should you decide that you do not like the contents of your grid, and want
to wipe it clean, pressing CLEAR will give a partial screen clearance.
130 IF A"'12 THEN FOR P=2 TO 4 , p11
ODE 0 , P , PCLS Q2 , NE�:T P , PMODE PM ,
1 , GOTO 60

Only pages 2 to 4 are cleared as the PCLS is done in PMODE 0. This
command is also used if you want to clear a grid after storing a copy at the
top of the screen. As these copies are on page 1 they are not affected by the
CLEAR routine. Should you reaUy want to destroy the stored copies press
3 to clear page I.
1 40 IF A=51 THEt� PMODE0, 1 , PCLS Q
2 , PMODE 4, 1 , POKE 135, 0 , GOTO 60

If you decide that even the grid size is wrong then press ''I' ' to RUN the
program again.
90 IF A=49 THEN RUN

Inversion
A partial inversion of the screen in both grid and copy areas is possible. The
copy area has the CH array PUT, NOT over it, whilst the grid is reversed by
repeatedly PUTting array W, NOT, whilst moving down the appropriate
screen area. If you repeat the action in this way you can use a smaller array
than otherwise necessary.
150 IF A=73 THEN FOR N=YS-SY TO
YE+SY , PUTC XS-SX , N)-(XE+SX, N) , W , N
oT , NEXT N , PuT (CX, CY l-(CX+SX , CY+
SY) , CH , HOT , GOTO 80

This allows you to view and store an inverted copy but the screen should
be cleared before continuing.

Saving
When you have formed all the characters or frames you need you can
CSA YEM the screen as described previously.

191

Advanced Sound and Graphics for the Dragon Computer

Applications
Any kind of figure can be created on this system, and the grid may be small
or large. In fact this routine has been used to provide material for several
other chapters. Text characters are easily defined, for example Figure 14.1
shows a set of true lower case in store with a pound sign about to be added.
A Dragon logo is formed in Figure 14.2, and a tractor in Figure 14.J. We
will leave you to add the rest of the farm implements. Production for a
series of frames for animation is described elsewhere.

Figure 14.1 Generation of lower case and special characters
a b c d e f 9 h i J k l rn n o P q r s t u v w x � z

·+i·
1••7

•••••
Figure 14.2 Dragon logo

II ...,

192

£

Chapter 14 Working on a Grid

Figure 14.3 Tractor

� ..

193

CHAPTER 15

Animation

Runner
The next step on from simply moving things around the screen is to
animate a design - that is move parts of it to give the impression that it is
alive. Once again we'll look at a SET point approach and consider pro­
ducing the effect of a figure running. First we designed two alternative fig­
ures, the first showing a stationary figure facing forwards, and the second
a running figure facing to the right {Figure 15.1).

Figure 15.1 Runner

The coordinates are in DATA statements and READ into arrays as
before, but in this case there are really two alternative sets of coordinates.
The first 35 points (in line 5020} make up one figure (stationary), and
points 36 to 59 (in line 5030) the other (running). Only two arrays need be
used as we can take any points from an array at any time and do not have to
start from the beginning of the DATA each time. Separate subroutines to
SET each figure are in lines 1000 and 2000.

If you trace the order of the DATA points and then watch this program
in operation you will see that the simple animation effect is achieved
because the leg points are SET relatively slowly and in a particular

195

Advanced Sound and Graphics for the Dragon Computer

sequence so that one leg appears before the other. There is no point in con­
verting these SET points to the equivalent CHR$ as the increase in speed
would mask the effect of movement here.

The sequence of operation is as follows. The title is printed and if no key
is pressed then the first figure is displayed by the subroutine at 1000. If a
key is pressed the program drops through to 120 which updates the screen
offset (XO), clears the old picture, goes to the subroutine to SET the
second figure (2000), clears to screen again, and reprints the title.
1 0 GOSUB 5000
20 CLS0
30 xo=2 , vo=0 , c=2
1 00 PR ! NT li!256, "RUt�NER"
1 10 I F PEEK(337)=255 THEt� GOSUB
1 000 , GOTO 1 1 0
1 20 XO=X0+ 1 , cLs0 , GOSUB 2000 , cLS0
, GOTO 1 00
1 000 FOR N=1 TO 35 ' SET(xr n)+XO, 'r
(N)+'rO , C) , NEXT N , RETURN
2000 FOR �l=36 TO 59 , SET(X(N)+X0,
'r(N)+'rO, C) , NEXT N , SOU�lD1 , 1 , RETUR
N
5000 DIM X(59), 'r(59)
501 0 FOR N= 1 TO 59 , READ �:< N), 'f(N
) , NEXT N , RETURN
5020 DATA 1 ; 1 , 2, 1 , 3 , 1 , 1 , 2 , 2, 2 , 3 ,
2 , 2 , 3, 0 , 4, 1 , 4 , 2 , 4 , 3 , 4 , 4 , 4 , 0 , 5 , 1 ,
5 , 2 , 5 , 3 , 5 , 4 , 5, 0 , 6 , 1 , 6 , 2, 6 , 3 , 6 , 4 ,
6, 1 , 7 , 2 , 7 , 3, 7 , 1 , 8 , 3 , 8 , 1 , 9 , 3 , 9 , L
1 0 , 3 , 10 , 0 , 1 1 , 1 , 1 1 , 3 , 1 1 , 4 , 1 1
5030 DATA 1 , 1 , 1 , 2 , 2 , 1 , 2 , 2 , 1 , 3 , 1 ,
4 , 1 , 5 , 1 , 6 , 1 , 7 , 2 , 4 , 2 , 5 , 2 , 6 , 2 , 7, 3 ,
5 , 1 , 8 , 2, 8 , 3 , 8 , 3 , 9 ., 3 , 1 0 , 4 , 1 0 , 1 , 9 ,
0, 9, - 1 , 9, - 1 , 1 0

A n alternative to CLSO i s t o use a single 192 character string (BLS) to
erase only the top of the screen (PRINT positions O to 191).
40 BLS=STRINGS(192, 128)
120 XO=X0+1 , PRINT li!0 , BL$; • GOSUB
2000 , PRINT li!0, BL$; • GOTO 1 1 0
Sprinter
The runner described above appeared to move because of the slowness of
SET and RESET and it is also possible to use the techniques described for

196

Chapter 15 Animation

these with· PSET and PRESET in hi-res. However you can produce much
smoother animation in hi-res if you use GET and PUT, although of course
you still need to make the pictU:res to GET and PUT first. Figures 15.2 and
15.3 show two 'frames' of the movement of a sprinter which can be formed
by PSETting the coordinates given in the DATA statements.
1 0 DATA 4 , 0 , 5 , 0 , 6 , 0 , 7 , 0 , 4 , 1 , 5, 1 ,
6 , 1 , 7 , 1 , 4 , 2 , 5, 2, 6 , 2 , 7 , 2 , 4 , 3, 5 , 3 ,
6 , 3 , 7 , 3 , 4 , 4 , 5 , 4 , 6 , 4 , 7 , 4 , 5 , 5, 6 , 5 ,
4 , 6 , 5 , 6 , 6 , 6 , 7 , 6 , 4 , 7 , 5 , 7 , 7 , 7 , 3 , 8 ,
4 , 8 , 7 , 8 , 2, 9 , 3, 9 , 4 , 9 , 7 , 9 , 2 , 1 0 , 4 , 1
0, 7 , 1 0 , 8 , 1 0 , 9 , 1 0 ., 1 0 ., 1 0 , 1 1 , 1 0 , 1 , 1
1 ., 2 , 1 1 , 4 , 1 1 , 7, 1 1 , 8 , 1 1 , 9 , 1 1 ., 1 0 , 1 1
, 1 1 , 1 1 , 1 2 , 1 1 , 2 ,, 1 2 , 3 ., 1 2
20 DATA 4 , 1 2 , 5 , 1 2 , 6 , 1 2 , 7 , 1 2, 3 , 1 3
, 4 ., 1 3 , 5 , 1::3., 6 , 1 3 , 7 ., 1 3 , 4, 1 4 , 7 , 1 4 , 4
� - 1 5 , 5, 1 5 , 6, 1 5 , 7, 1 5 , 4, 1 6 ., 5, 1 6 , 6 , 1
6 ., 7 , 1 6 , 4 , 1 7 ., 5 , 1 7 , 6 , 1 7 , 7 , 1 7 , 8, 1 7 ,
9, 1 7 , 1 0 , 1 7 , 4 , 1 8 , 5 , 1 8 , 6 > 1 8 ., 7 , 1 8 , 8
, 1 8 , 9, 1 8 , 1 0 > 1 8 , 5, 1 9 ., 6 , 1 9 , 1 0 , 1 9 , 1
1 , 1 9 , 5 , 20 , 6 , 20, 1 0 , 20 , 1 1 , 20 , 5 , 2 1 ,
6 ., 2 1 , 1 0 , 2 1 , 1 L 2 1. , 5 , 22, 6 , 2
:30 DATA 1 0 , 22, 1 L 22, 1 2 , 22., 1 3 , 22,
5 , 23 , 6 , 23 , 1 0 , 23 , 1 1 , 23 , 1 2 , 23, 1 3 , 2
3 , 5 , 24 , 6 , 24 , 5 , 25 , 6 , 25 , 5 , 26 , 6 , 26 ,
7 , 26 , 8 , 26 , 5 , 27 , 6 , 27 , 7 , 27 , 8 , 27
40 DATA . 55, 0, 56, 0 , 57, 0., 58, 0, 55., 1
, 56 , 1 , 57 , 1 , 58 , 1 , 55 , 2 , 56 , 2 , 57 , 2 , 5
8 ., 2 , 55, 3 , 56., :3 , 57, :3, 5.8 , 3 , 55, 4 , 56,
4 , 57 , 4 , 58 , 4 , 56 , 5 , 57 , 5 , 55 , 6, 56 , 6 ,
57 , 6 , 58 , 6 , 55 , 7 , 57 , 7 , 58 , 7 , 54 , 8 , 55
, 8 , 57 , 8 , 58 , 8 , 53 , 9 , 54 , 9 , 55 , 9 , 57 , 9
, 58 , 9 , 53, 1 0 , 55 , 1 0 , 57 , 1 0 , 58 , 1 0 , 59
, 1 0 ., 60, 1 0 , 6 1 , 1 0 , 62, 1 0
5 0 DATA 52, 1 1 , 53, 1 1 , 55, 1 1 ·' 57) 1 1 ,
58, 1 1 , 59 , 1 1 , 60 , 1 1 , 6 1 , 1 L 62 , 1 1 ., 63
) 1 1 , 53, 1 2 , 541 1 2 , 55, 12 , 58, 1 2 , 54, 1
3) 55 , 1 3 , 58 , 1 3 , 55 , 1 4 , 58 , 1 4 , 55 , 15 ,
56, 15 , 57 , 1 5 , 58, 15 , 55 , 1 6 , 56 , 1 6 , 57
·' 1 6 , 58 ., 1 6 > 55 , 1 7 1 56 , 1 7 , 57 , 1 7 , 58 , 1
7 , 55 , 1 8 , 56 , 1 8 , 57 , 1 8 , 58 , 1 8 , 59 , 18 ,
56, 1 9 , 57 , 19 , 59 , 19 , 60 , 1 9
6 0 DATA 5 6 , 20, 5 7 , 2 0 , 6 0 , 2 0 , 6 1 ., 20,
56, 2 1 , 57 , 2 1 , 61 , 2 1 , 62 , 21 , 5 1 , 22 , 52

197

Advanced Sound and Graphics for the Dragon Computer

} 22 > 53 , 22 , 54> 22 , 55 , 22) 56 , 22 , 57 } 2
2 , 6 1 , 22 , 62, 22, 5 1 , 23 , 52 , 23 , 53 } 23 ,
5 4 , 2 3 , 5 5 , 23 J 5 6 , 2 3 , 5 7 , 2 3 J 6 1 , 2:3 J 6 2
, 23 , 5 1 , 24 , 52 , 24 , 6 1 , 24 , 62, 24, 5 1 , 2
5 , 52 , 25, 6 1 , 25, 62, 25, 6:3 ., 25, 64J 25 ,
6 1 , 26 , 62 , 26 , 63 , 26 , 64 , 26
80 PMODE 4 , 1 , SCREENl , 0 , PCLS
90 FOR N=l TO 249
1 00 READ X , Y , PSET(X+10 , 't)
1 HJ NEXT N

Figure 1S.2 Sprinter Frame 1

Figure 1S.3 Sprinter }�rame 2

198

Chapter 15 Animation

Once the two frames have been PSET (a very slow job, but at least it only
has to be done once!) you can GET them into arrays FI and F2, and PCLS
away the figures you just PSET ready for the animated sequence.
?0 D I M F 1 (50) • DI M F2(50)
1 20 GET(5) 0)-(30) 27)) Fl) G
1 30 GET(55 , 0)-(80, 2? l , F2 , G
1 40 PCLS

The simplest sequence is to PSET each array in turn so that the figure
runs on the spot half way down the left hand side of the screen.
1 80 PUT(:� . 1 00)-(X+25 ., 1 2?), F I , PSE
T
200 PIJTO(, 1 0(1)-(X+25, 1 2 ? > ., F 2 ., PSE
T
230 GOTO 1 80

If you now arrange to increment X in a FOR . . . NEXT loop he runs
across the screen from left to right. Notice that each frame is shown at each
X step before X is updated. Figure 15.4 shows the two frames frozen
alternately at a number of screen positions.
160 FOR X=l TO 230 STEP 5
220 NE:�T :�
230 GOTO 1 40

Figure 1S.4 Frozen sprinters

He moves very smoothly and quite rapidly across the screen, but what
happens if there is a visible background behind him? Add in some horizon­
tal lines to give a test background and RUN again.
1 50 FOR L I = 1 TO 30 STEP 5 • L I NEC 0
, L I)-(255, L I), PSET • t·lEXT L I

As you can see from Figure 15.S the lines vanish as the man runs over
them, which is not much use in a real program. Now we could GET the
background just before we PUT the figure and then PUT the background
back when it moved on. We only GET the background once for both

199

Advanced Sound and Graphics for the Dragon Computer

frames as it is the original background we need to PUT back. If we just
recreate the background with PSET then the lines reappear (Figure 15.6)
but there is a lot of flashing and whilst each frame of the figure is shown
part of the lines are erased.

70 DIM F 1 (20 l • D IM F2(20 l • D IM BG(
20)
1 70 GET< X, 0)-(X+25, 27), BG ., G
2 1 0 PUT(X , 0)-(X+25, 27 l , BG , PSET

Figure 15.5 Background erased

Figure 15.6 PUT, PSET figure over background

To get a smoother replacement of the background (Figure 15. 7) we need
to make things a little more complicated, and apply some logical actions in
our PUT commands.

180 PUT< X , 0)-(X+25, 27 l , F l , OR
190 PUT(X, 0)-(X+25, 27 l , BG, At!D
200 PUT(X , 0 l-(X+25, 27 :> , F2 , OR
2 10 PUT(X, 0)-(X+25, 27) , BG, At�D

Figure 15. 7 The logical answer

First we PUT the first frame (FI) over the background (BG) with OR.
This gives background plus frame 1 as all points which are set in either
array OR screen are set. Now we PUT back the background (BG) with
AND so that only points which are common to both the current screen and
the original screen remain set. This produces the original position and we
can then PUT the second frame (F2) with OR and then AND this with the

200

Chapter 15 Animation

backgroui,.d (BG) as for frame I. Notice t"hat it is essential to PUT the
background back between frames if you are to avoid problems with the
International Athletics AssociJ:ition over three-legged sprinters.

Flying high
The degree of realism in an animation depends on the accuracy of the
frames, but also on the number of frames in the sequence. As an example
Figures lSa-e show a series of four different pictures of a bird in flight.
The easiest way to produce such a series of related frames is to generate
them on the screen grid system described earlier. The first picture shows the
wings in the highest position and when @ is pressed to transfer the finished
design to the top of the screen (Figure 15.8b) the grid lines are redrawn so
that the points blocked in now form a solid pattern. This feature makes it
simpler to construct the design of each subsequent frame as you can easily
modify the existing picture, but still see which parts have been changed.
When all the frames have been finished you can CSA VEM the top of the
screen and on reloading GET and PUT these designs without ever actually
thinking about which points you have PSET. Obviously that is a lot easier
than typing in long DATA statements, but it does mean that you will have
to copy our pictures onto the screen grid instead if you want this bird to fly.
By this time you should be able to modify the sprinter program above to
GET and PUT the correct areas.

Figure 15.8 Flying high

l-J. I I I ·
I

= -· I I
,....._. I I ·->----· I •-,-+--• --.·----.

•••
••• I
• •

• I I

201

Advanced Sound and Graphics for the Dragon Computer

Figure 15.8b

···,./

• • •

Figure 15.8c

y'

Oasis

• • • • •

The only real disadvantages of GET and PUT animation are that you
cannot change the scale, colour or angle of your design. DRAW will allow
you to change these factors, but as it is slower than GET and PUT it is only
useful for some applications, and new designs are best produced on
graphics pages which are out of sight and then PCOPYed back to the cur­
rent screen. As an example we will look at producing an oasis in the desert
which gets bigger as you approach it.
202

Chapter Jj Animation

First we need to PCLEAR all eight graphics pages and PCLS the first
four to yellow (colour 2) to represent the sand.
10 PCLEAR B • PMODE 3, l • SCREEN 1 , 0
• PCLS2

Figure 15.8d

---- ----• •

Figure IS.Se

1--1-1----
--.-

•

,....,._

203

Advanced Sound and Graphics far the Dragon Computer

Figure IS.Sf
� ... � -�,,.,- .. -.-. �...--:.

••
• • • • • • • •

The quickest way to set the top half of the screen to blue for the sky is to
change the PMODE to 1 (which only uses two pages) and PCLS to 3.
Remember that as there is no SCREEN command you are still looking at
PMODE 3. Now we change the PMODE back to 3 and make a painted
circle for the sun.
20 PMODE 1 , 1 , PCLS 3 , p11ODE 3 , 1 , c r
RCLE(230 1 :30) ., 201 2 : PA I NT(230, 30) 1
2 1 2

In each picture the oasis is built up on a hidden screen on pages 5 to 8.
PCLS 2 in PMODE 3 sets this to yellow and then PCLS 3 in PMODE I
makes the top half blue.
50 PMODE 3, 5 , PCLS2 , PMODE 1 , 5 ' PCL
S3 , PMODE 3 , 5

The actual oasis is produced with ORA W and PAINT.
40 Af= " C 1 LGER2FHLFHGEC4" , W$=" Bt1 1
28, 1 1 0C3BM-6, +0FR1 0EL 1 3BM+6, +0" ,
PT$=" C4U5XA$; B11+4 , +5U4XA$.: Br1-8 , +
4U3C 1 �:AS ; "
60 DRAW W$ ' PAHH(1 28 , 1 1 1), 3, 3 , DR
AW PT$

To see the oasis on the screen we must PCOPY the last three pages of the
hidden screen onto the last three pages of the screen display. As the top
page does not change there is no point copying this.

204

Chapter 15 Animation

70 PCOPY 6 TO 2 , PCOPY 7 TO 3 , pco
PY 8 TO 4
80 SOUND(S:t.5) , 1
90 GOTO 90

If you RUN this you will see a minute oasis in the far distance (Figure
15.9), but if you add an incrementing scale factor (S) it will increase rapidly
in size.

30 FOR S=4 TO 48 STEP 4 , oRAW"S"+
STR$(S)
90 NEXT S

Figure 15.9a Oasis (scaled down animation)

205

Advanced Sound and Graphics/or the Dragon Computer

Figure 15.9b

Figure 15.9c

206

Chapter 15 Animation

Figure 15,9d

Figure 1S.9e

207

Ad11anced Sound and Graphics for the Dragon Computer

Figure 1S.9f

Figure 15.9g

208

Chapter 15 Animation

Figure 15.9b

Figure 15.9i

209

Advanced Sound and Graphics for the Dragon Computer

Figure IS.9j

Figure 15.9k

210

Chapter 15 Animation

Figure 1S.91

Of course mirages are very common in the desert so you shouldn't be too
surprised when your head starts to spin and the oasis vanishes into the
distance again.

1 00 FOR A=0 TO 3 , pf1ODE 3, 1 , PCLS2 '
PM ODE 1 , 5 , PCLS3 , Pt1ODE 3, 5 , DRAW "
A" +STRS(A)+ " S " +STRS(48-(1 6:t.A))+W
$+PT$
.1 10 PCOPY 6 TO 2 , PCOPY 7 TO 3 , pc
OPY 8 TO 4 , tlEXT A
120 FOR N=255 TO 1 STEP -5 , SOIJND

N, 1 , NEXT tl
130 RUtl

211

; O c. c s

-z o X = 0

:J O fa 1 10 J I Ou , >< �

4 o P . :. PH1c. (11s)
SO f\$1 : C �1 <i -1t(n)

£ O i (: f 'i (,c (31 l : -Z SS" ,1/-Q/ /4 �
·7 0 I � � A� -: _ Cl-lG?J (W 1 fl ,::rv :x� X-JJ
g-e> I ? � ::: C i-1-olJ;(1 0) TJrerv x := ;,..- - J

{ D u (;o irO '1D

CHAPTER 16

Sound Synthesis

Although you are never going to get your Dragon to sound like a real
synthesiser it is possible to demonstrate some of their features with this
program. (It is generally known as the "MOO" synthesiser, as the results
are rather feline at times).
Repeating keyboard sound
Although we showed you earlier how to PLAY notes directly from the key­
board with INKEYS this method had two main disadvantages. The first is
the fact that INKEY$ does not autorepeat so you have to lift yo_ur finger
from the key before you can sound a note again. The second problem is
that the key� for C D E F G A B are not in very logical places for playing
music! As you have already seen making keys autorepeat is easy if you
PEEK at location 135 which contains the ASCII code of the last key
pressed. If we convert this to its character representation which is CHR$
we can PLAY it and a loop will then sustain the note until the key is rel­
eased. (Notice that it is not a case of converting the number to a string with
STR$ but of making the character with CHR$.)

80 A=PEH'.(1 35)
130 AS=CHRS(A)
180 PLAY A$
1 90 GOTO 80

If you try that routine you will find that it doesn't work, although not
because the logic is wrong! First of all there is a problem with the key­
bounce of the ENTER key you used to RUN the program, and Secondly
location 135 retains the code for the last key pressed. A preliminary pause
gets over the keybounce, and a PEEK at 337 will tell us if a key has been
pressed. Add these lines and keys A-G will autorepeat satisfactorily.

60 FOR t·l= 1 TO 100 , t·lD'.T N
70 IF PEEK(337)=255 THEN 1 10
1 90 GOTO 70

213

Advanced Sound and Graphics for the Dragon Computer

The autorepeat is rather slow so change the default tempo setting to
speed things up. A value of around TSO gives a reasonable effect.
50 PLAY" T50"

At the moment the note stops as soon as you release the key, but if you
jump back to 120 instead of 110 the last note will continue to be repeated
until you press another key.
1 90 GOTO 80

Reconfiguring the keyboard
Pressing an invalid key will still cause an FC ERROR but now that we can
repeat a note continuously, or alternatively permanently sustain it, let's
think about rearranging the keyboard. If you compare the Dragon key
layout to a piano keyboard you can see that a more suitable set of keys to
use would be Z S X D C V G B H N J and M (Figure 16.1), where Z X C V B
N and M represent the white notes and S D G H and J the black notes. A
simple way to convert these keys to suitable notes using the INSTR fun;.
ction. First we need to set up a string (K$) containing all the valid keys.
Next we need to compare the key pressed with KS. If the key pressed does
not correspond with a character in KS then INSTR will give 0. If, on the
other hand,there is a match with a character in KS then INSTR will give a
number corresponding to the position of that character in the string.
10 K!li=" ZS)(DCI/GBHt·Ut1 "
140 C=I t·lSTR(1 , k:!li , A!li)
150 IF C>0 THEN A!li=STR!li(C) ELSE
80

When you RUN this you will find that the designated notes function as
the scale CDEFGAB and any other notes are ignored. But how was this
miracle achieved? Well to understand that you must go back to square one
again. Although so far we have only considered PLA Ying notes designated
by letters the Dragon also understands that the numbers 1 to 12 represent
the same.notes (Figure 16.2). What we have done is arrange the notes in KS
in such an order that their position actually gives the corresponding
number.
A second octave
If we set up another string containing a different set of characters (Figure
16.3) we can use these to produce a higher octave if we add ''O + '' before
the note, but we must then put "0- " after the note to reset the octave.

214

Chapter 16 Sound Synthesis

20 L$= " T6Y7Ul 900P , � "
1 50 I F 0 0 THEN A!li=STR!li(C :, , GOTO
1 80
1 60 C=! NSTRC 1 , L!li , A$)
170 I F C>0 THEtJ A$="0+" +STR$(C H
"O- 11 : ELSE 80

Figure 16.1 Reconfiguration of keyboard

Figure 16.2 Number representation of notes

e 1 e a , o , 1 1 2

Changing the tempo
We previously set the tempo to T50, but as this will not suit all tunes and
tastes why not build in a way of altering the tempo up and down whilst the
program is running. We can easily link T + and T - to the left and right
cursor keys so that the left arrow slows the tempo and the right arrow raises
the tempo. It is most useful if you can actually hear immediately the result
of your action so we continue to PLAY A$ as the tempo changes. If you
press any key which is not designated as a note A$ is not updated and

215

Advanced Sound and Graphics for the Dragon Computer

Figure 16.3 Adding a second ocl!,ve

therefore you will PLAY the old A$ and hence repeat the last note. When
you release the cursor key the tempo stays at the current value, so you can
use this facility to juggle until you are happy.
90 IF A=9 THEtl PLA'/"T+" , GOTO 1 80
100 IF A=8 THEN PLA'l " T- " , GOTO 1 8
0

It is possible to crash this routine if you really try hard and make T< I or
T> 255 but in practice it is unlikely you will reach these limits so we have
not bothered to include any limit checks.
Volume control
We could alter the volume in the same way as the tempo, but as the range of
values is much smaller (1-31) it is much easier to reach an illegal value. It is
therefore better to use an external variable and add this in after STR$ con­
version.
30 V= 15
1 10 ON ((A=10)-(A=94))+2 GOTO 21
0 , 120 , 200
180 PLAY A$+ "V" +STR$(V)
200 V=V+l , I F V>31 THEN V=3 1 , GOTO

180 , ELSE 180
2 1 0 V=V- 1 , IF V< 1 THEN V=l , GOTO 1
80 , ELSE 180

216

Chapter 16 Sound Synthesis

The volume is set half way at the start (V= 15) and PLAY "V" +
STRS(V) is added in front of AS in line 180. The keys are sorted by an ON
GOTO which looks for the codes for the up and down cursor keys. If nei­
ther the up arrow nor the down arrow is pressed then (A= l0)and (A =94)
are both untrue and (0)-(0) = 0 so when 2 is added the result is 2, and the
program continues to 120. When the up cursor arrow is pressed (A= 10) is
true and (A= 94) is false so (- I)- (0) + 2 = I, which goes to 200 which
raises the volume unless V> 31. When the down arrow is pressed (A= 10) is
false and (A= 94) is true so (0)- (- 1) + 2 = 3 which goes to 210 which
lowers the volume unless V< I.
Changing the octaves
As we have only defined our top octave as being one octave higher than our
low octave it is easy to change both octaves at once. The start octave is set at
3 in line 40 and line 120 looks for the codes for keys 1 to 4 (49-52) which
change the bottom octave to that number by PLAYing "On".
40 0=3
120 ON (A:48) GOTO 220 , 230 , 240 , 2
50
220
230
240
250

PLAY"Ol "
PLAY"02"
PLA'/ "03"
PLAY "04"

Envelopes

, GOTO
, GOTO
, GOTO
, GOTO

70

70

70

70

So far each repeat of each note sounds the same, although most musical
instruments actually have a characteristic sound 'envelope'. In simple
terms this means that the rate at which the sound rises (attack) and falls
(decay) varies, and an approximation of envelope control can be achieved
by loops which play each new key with changing sequence of volumes.
Several examples are given below and in each case the routine described can
be used to replace line 180.

The simplest situation is a steady decay from maximum value.
1 80 FOR E=3 1 TO 1 STEP- 1 , PLAY"\I"
+STRf(E)+Af , NEXT E

Adjust the tempo until you get a reasonable effect and then alter the step
size to get more rapid decay.
180 FOR E=31 TO 1 STEP-3 , PLA�' "\I "
+STR$(E)+A$, NEXT E

217

Advanced Sound and Graphics for the Dragon Computer

A less regular and more interesting effect can be produced by relating the
size of the step to the current volume.

180 FOR E=:31 TO 1 STEP - INTOV5)
• PLAY "V"+STR$C E)+A$ • NEXT E

Control of attack can be introduced in the same way by means of a loop
which steps up. Attack is normally faster than decay so up steps are bigger
than down steps.

180 FOR E=l TO :3 1 STEP 7 • F'LA'("V"
+STR$(E)+A$, t,E>(T E • FOR E=:31 TO 1

STEP -2 • PLAY "V"+STR$(E)+A$ • NrnT
E

Of course actual values can also be entered if desired to produce any
sequence.

180 PLAY"V? "+A$+ "V14 "+A$+" V28 "+A
S+ 11 V31 11+A$+ 11 V20 11 +A$+ 11 V1 0 11 +A$+ 11 V9
"+A$+ 1 1 V8 11+A$+ " V7 11 +A$+ 11 V6 11 +A$+ 11 V5
11+A$+ 11 V4 1 1 +A$

You can also use the < , > , + and - signs in conjunction with V. This
rapid size and fall in volume produces rather a tremolo effect.

180 PLAY 11 V7 11 +Ft$+ 11V) 11 +A$+ 11V) 11+A$+
II V< II +AS+ II V< II +A$+ II V? II +A!$

Finally we must point out that it is also possible to change the tempo,
note length, or octave to produce interesting sounds by the same methods,
although we'll leave you to experiment with those yourselves.

218

CHAPTER 17

Graphic Music Editor

This graphic music editor gives an excellent demonstration of a combi­
nation of the sound and graphics capabilities of the Dragon as it allows you
to enter a piece of music, display it in standard musical notation on the
screen, and then play it (Figure 17.1).

Figure 17 .1 Graphic music editor

;ii .i k
' ;ii if Ff .i ,I ttl ttl

.i ,. ,. fl ,. ,. .i, e ! e t�

ii ' .i • .i, ' .i .i ., d .i I

When entering music we need to consider a number of different factors.
A single character on the manuscript tells us more than orie thing. The
shape of the character tells us the note length and the position on the stave
the actual note on the scale and octave. We also need to be able to include
sharps and flats. Two modes are provided. In EDIT mode the position is
indicated by a flashing cursor which is placed on the line of the stave which
corresponds to the current note on the scale. The cursor keys can be used to
move this position in any direction. Up and down arrows change the note
on the scale, left and right arrows move from your position in the tune, and
shifted up and down arrows move you from line to line. The length of note
requiied is chosen by pressing keys 1 to 4. The spacebar is used to delete an
unwanted note.

219

Advanced Sound and Graphics for the Dragon Computer

The tune is stored in strings which are sliced to obtain the relevant infor­
mation for both sound and graphics. Each note is coded by a seven cha­
racter block.

eg L1203B-, L 402C', or L 802DJI
The first three characters define the note length, (eg L12, L 4 or L 8).

Note the space when L is less than 10. The next two characters specify the
octave, which can be 02 or 03. The sixth character is the note on the stale
(A-G) and the last character indicates whether the note is flat (-), natural
(') or sharp (ll).

If "P" is pressed in EDIT mode then PLAY mode is entered and the tune
so far is PLAYed and displayed on the screen. A method of saving your
tune is also provided.
Setting up
The first stage of the setting up procedure involves clearing the screen to
black on green, clearing 10000 bytes for variables, �nd setting a number of
these. X controls the left/right position on a line, and Y the overall
up/down position on the screen, NO is the vertical position on the stave,
and LI is the current line of music (1-4)> . Four array elements are set up
as PAS(n) to hold the _notes entered on each line. Initially these are
completely filled by 255 single quote marks (') (CHR$(39). If you try to
PL.A Y a blank space you sometimes get an FC ERROR, but the system is
quite happy to PLAY CHRS(39), even though you can't hear it. Filling the
string in this way prevents problems when slicing.
1 0 GOTO 690
690 PMODE 4, 1 , SCREEt·l l ., 0 , PCLS 1 , CO
LOR0, 1 , CLEAR 1 000•3 , X=40 , Y=48 , MO=
7 , L J = l , DI M PR$(4 J , FOR M= l TO 4 , p
A$(M)=STR H lG$(255 , :39 l , t,E:�T t,

Graphic parts

We draw all the required graphics parts first and then GET and PUT them
(Figure 17 .2). The picture for each graphic part must be stored in a separate
array by GET so a number of arrays are set up.
700 D I MSBC 0 , 1 0) , D I MM 1 C 0, 1 0) , D I MM
2(0, 1 0) , D l t1C 1 C 0 ., 1 0) ' D l t1C2C 0 ., W) '
D I MQ 1 (0 , 1 0) , D I MQ2(0, 1 0) , C, I MS 1 (0 ,
1 0) , C• I MS2C 0 , 1 0) , D l t1SP(0 , :3•3) , D I M
BRC 0 , 1 0) , DI M CUC0, 1 0) , C• I M :3HC 0 , 1
1) J , DI M FL(0 ., 1 0)

220

Chapter J 7 Graphic Music Editor

Figure 17.2 Graphic parts
Q d

Now the signs for the different note-lengths can be drawn. All these have
a circle as a basic part so seven are drawn. This completes the drawing of
the first one, the semibreve.
7 1 0 FOR N=20 TO 1 40 STEP 20 , C I RC
LE< t·L 20), 3 , NE:�T t·l

The other six drawings represent only three actual lengths of note as the
position of the tail on these must vary according to their position on the
stave. First those with an ascending tail,
720 FOR t4=40 TO 80 STEP 20 • L rnE(
tH3 , 20)-(tH3., 1 0) , PSET , t4EXT tl

and then those with a descending tail.
730 FOR t4= 1 00 TO 1 40 STEP 20 , L I N
E (�l-3, 2 0)-(N-3, 30) , PSET , t4EXT t4

Now we need some black paint to distinguish the quaver and crotchet
from the minim,
740 PAr nT(60, 20), 0, 0 , PA r nT< 80, 20
) , 0 , 0 , PAr nT< 120 ., 20) , 0 ., 0 , PA r nT(1 4
0J 20)J 0J 0

and finally we must dash the tail of the quaver.
750 L I NE(83, 1 0)-(88, 1 3) , PSET , L i t·l
E(137 , 30)-(1 42 , 27 > , PSET

A replacement section of the stave is drawn,
760 FOR N=0 TO 1 6 STEP 4 , L i t4E< 1 5
13 , N + 1 5 >-< 1 7 0 ., tH 1 5) , PSET , NEXT N

followed by a bar line.
770 L I NE(180, 20)-(1 80, 36), PSET

221

Advanced Sound and Graphics/or the Dragon Computer

a sharp sign,

78>3 DRAW " 8M200 ., 24,34R2U28M+2 ., +0 .• (:,
2R2BM+0, +2; L2D2BM-2 , +0 ; U2L2"

and a flat sign.
790 DRAli " BM220 ., 20D 1 0E:3H3 "

We now GET each of these into the appropriate array before passing to
the subroutine which draws the stave {this is placed as a subroutine as it is
also used by the play routine later).
800 GET(1 7 , 17)-(23, 23) , ,38 ., G
8 1 0 GET(37, 1 0)-(43 J 23) , M l , G
820 GET(57, 1 0)-(63, 23) , C l , G
830 GET(77, 10)-(88, 23), 1)1 , G
840 GET(97 , 17)-(103, :30), M2, G
850 GET(1 1 7 , 1 7)-C 1 23 , 30) , C2 , G
860 GET(1 37., 1 7)-(1 48 ., 3>3) ., 02, G
870 GET< 1 50 , 0)-(170, 56) , ,3F' , G
880 GET(1 80 , 20)-(180 ., 3 6) , BA, G
890 GET(200 , 22)-(207 , 28) , SH , G
900 GET(220 , 20)-(224 , :30) , FL , G
9 1 0 GOSUB 920 • GOTO 60

Drawing the stave
The graphics parts are erased and four sets of five lines are constructed
down the screen (Figure 17.3). The complex treble clef is easily ORA Wn
after an appropriate Blank Move to set the position.
920 PMODE 4 , 1 • SCREEN1 , 0 • PCLS ! • C
LS ! • COLOR 0 , 1
930 FOR t�=40 TO 1 6>3 STEP 40
940 FOR M=0 TO 16 STEP 4
950 L I NE(0, N+M)-(255 , N+M) ., PSET
960 NEXT M
970 L HlE(0, ts)-(255 , t·l+ 1 6) ,.P':lET , 8
980 DRAW " BM 1 0 , " +STR$(N+22)+" RU25
E3R3FD4G1 WF2R6U3"
990 NEXT N
1 000 RETUR�l

222

Chapter 17 Graphic Music Editor

Figure 17 .3 The stave

On RETURN we jump back to the program proper in line 60.

Cursor and keycheck
INKEY$ is read into A$ and then we GET a square of the screen around
coordinates X, Y into CU and immediately PUT it back with PRESET.
This inverts the screen display in that area. After a short delay CU is PUT
back with PSET to recreate the original display. If no key is pressed this
flashing cursor sequence is repeated. If a key is pressed a check is made to
see if the current position is too far to the left (X< 40) nr right (X> 240).

60 A$=1 NKEY!fi : GET(X.-5) Y-5)-(X+5) Y
+5) , CU) G : PUT(?'�-5) Y-5)-(X+5) V+5))

CU, PRESET , FOR M= 1 TO 50 , t·lEXT fl , P
UT(X-5) Y-5)-(X+5 J Y+5)) CU) PSET : JF

A!li= " " THEN 60 ELSE IF :�< 40 OR X
>240 THEt� GOTO 80
Note lengths
If the position is valid then the V ALue of the key pressed is taken. Only
number keys have a V ALue so this separates the number keys from other
keys. Keys 1 to 4 are used to indicate note lengths from semi breve to quaver
and only these will branch in the ON GOTO to the lines which draw the
characters.

70 A=VAL< AS) , Ot� A GOTO 2 1 0 , 220, 2
30, 240

223

Advanced Sound and Graphics/or the Dragon Computer

The semibreve is easily dealt with as it looks the same no matter where it
appears on the stave. Note that the array is PUT . . . ,AND rather than OR
to produce superimposition as the screen display is inverted.
2 1 0 PUT(X-3) �,-:3)-(X+3 ., 'r'+3) > SB, AM
D , GOTO 250

For the other note lengths the current note position on the scale must be
checked to determine if the tail should go up or down. If you have not
changed the cursor position then the note position (NO)·wm still be 7.

220 IF t,O< 7 THEt·l PUT(X-3, Y-10)-(
X+3 , Y+3), M l ., At,D , GOTO 250 , ELSE PU
T(x-:3) Y-3)-(x+:3 > V+ 1 0)) M2) A�m : GOT
0 250
230 IF fl0<7 THEN PUT(X-3, Y- 1 0)-(
X+3, Y+3), C l , At·lD , GOTO 25•3 , ELSE . PU
T(:�-3, Y-3)-(X+3 ., Y+ 1 0) , C2 ., At,D ' GOT
0 250
240 IF t,0<7 THEM PUT()'.-3 , 'i'- 10)-(
X+8 , '/+3) , Q L AND , GOTO 250 , ELSE PU
T(X-3 , '1'-3)-< X+8, '1'+ 1 0) , Q2, AND , GOT
0 · 250

Adding to the strings
Once the screen display has been updated an ON GOSUB related to the
note (NO) on the scale sets NOS to the correct octave and note format for
PLAYing. On RETURN PLS is built up by adding "L" to four times the
V ALue of the key pressed (A *4) and NO$.
250 ON t40 GOSUB260 > 270 > 280) 290) 3
00) 31 0 , 320, 330 , 340 > 350> 360) 370, 3
80, 390 , PL!li="L"+R I GHT!li(STR!li< A:t.4) ,
2)+NO$, GOSUB 400 , x=x+20 , • GOTO 20
260 N0$="02C' " , RETURt,
270 N0$:"02D' " , RETURN
280 NO!li="02E ' " , RETURt·l
290 NO$=" 02F ' " , RETURt,
300 N0$="02G' " , RETURN
3 1 0 NO!li="02A' " , RETURt·l
320 NO!li="028' " , RETURN
330 N0$= "03C ' " , RETURN
340 N0$="03D' " , RETURN
350 N0$= "03E' " , RETURt,
224

Chapter 17 Graphic Music Editor

:360 N0$=" 0:3F ' " , RETURN
:370 t4O$= 11 O:3G) 11 : RETIJRt4
:380 t!O$=" 0:3A' " , RETURt!
:390 tl0$="0:38' " , RE'rURt·I

The subroutine at 400 is now called. This inserts the current string (PL$)
into the total string (PA$(LI)). XS is calculated from the current screen
position and defines the breakpoint between two notes. I and SF are used if
PL$ is a sharp or flat (see later).
400 XS=(((X-20 l/20 lt? l+I ' PA$C L i l
=LEFT$(PA$(LI l ., XS-SF HPL$+MJ C,$(P
A$(L I l , XS+8, LEW PA$(L I l)-4 l ' RETU
Rtl

Finally the screen position is updated (X = X + 20) and the program
loops back to line 20.
Limit tests
After each key press checks are made to ensure that the new cursor position
is within limits, and XA (distance of current move) is reset to zero.
20 IF X+XA<40 THEN X=X-XA ELSE X
=:�+XA
:30 IF �:+XA>250 THEt·l X=),:-;�A ELSE
>�;:>�+>-�A
40 I F X >240 THEN X=240
50 >�A=0
Other keys
If a key which is not a number in the range 1 to 4 is pressed then a series of
other routines may be called.
Cursor keys
Logic tests convert left/right cursor key movement into increases in XA (X
axis position), and up/down cursor key movement into changes in NO
(note position on current line).
80 A=ASC(A$ l , XA=(1 0t((A=8 l-(A=9 l
l l , flO=NO+(((A= 1 0)-(A=94 l l l

If the note position falls outside limits it is reset to the limit and then the
overall Y coordinate is calculated from the current line (LI) and note (NO).

90 I F NO<! THEt·I NO=NO+ 1
100 IF N0> 1 4 THEN NO=fl0-1
1 1 0 'r=(LI t40)+22-< t10l2)

225

Advanced Sound and Graphics for the Dragon Computer

"B" = bar line
If "B" is pressed a bar line is inserted. This is purely decorative and is not
added to the string.
120 I F A$= "8 " THEM PIJT0(- 15 , (L ! l
40))-(X- 15 , (L ll40)+ 16) , 8A , PSET

Shifted cursor
Shifted up and down cursor keys produce a movement from line to line,
provided the limits are not exceeded. The start position is reset to the left
hand end, and the overall Y coordinate updated.
1 30 IF A=9 1 AND L l (4 THEN L!=L!+
J : X=40 = Y=(L lt40)+22-(NOl2)
140 I F A=95 AND L I > ! THEN L I=L I-
1 : X=40 = Y=(L lf40)+22-(NOf2)

< spacebar> = delete
Pressing the space bar PUTS the spare section of stave with PSET over the
note to be deleted, thus removing it from the screen. At the same time the
old note is deleted from PA$(LI) by replacing it with a series of CHR$(39).
1 50 I F A=32 THEN PUT(X- 1 0 , (L l l40
)- 15)-(X+ 1 0 , (L I%40)+3 1) , SP , PSET =
PL$= " ' ' ' ' ' ' ' " • GOSU8 400

" lf" = sharp

The hash sign is used to indicate a sharp and this is PUT . . . ,PSET rather
than AND to make it clearer. The hash sign appears to the left of the cur­
rent cursor position and as SF is set to I and I to 7 the hash sign is added to
the note to the left of the current cursor position, replacing the trailing
CHR$(39) in the seven unit block.

1 60 I F A$="# " THHl PUT()(- 1 1 ., '-,'-:3)
-(:��-4) ''(+:3) } !:H } F':3ET = F'L$= 1 1# 11 : SF=l :
! =? , GOSUB 4130 , SF=I) • I =O
" - " = flat
The minus sign indicates a flat and operates in the same way.
1 70 IF A$= II - 11 THEt·� PUT(>�-7 ·' Y-7)-
(X-3, \'+3), FL ., At1D • PL$= "- " · SF=! • I =
? • GOSUB 400 • SF=0 • 1 =0

226

Chapter 17 Graphic Music Editor

"P" =. play
"P" leads to the PLAY routine, which first calls the subroutine at 920
which draws the blank manuscript.

1 80 IF A$= " P" THEt4 GO:3UB 4 10
4 1 0 GOSIJB 920

Each line is considered in turn, with the start position (X2) being first set
to coordinate 40.

420 FOR PL=l TO 4 , x2=40
The string is sliced from position 6 (seventh character) to the end in

blocks of seven, and each block is PLAYed.

430 FOR X1=6 TO 255 STEP 7
440 PLAYM I D$(PA$(PL) , X 1 _, 7)

The end of the actual notes on a line is detected by the presence of two
consecutive blocks of CHR$(39).

450 IF M ID$(PA$(PL), X l , 7)= " ·' ' ' ' ·'
THEtl FL=FL+l ELSE FL=0

460 IF FL>2 THrn NEXT PL , RETIJRN
To recreate the graphics the string segment must be decoded. First we

must extract the last but one character as NOS.
470 NO$=MID$(PA$(PU, X 1 +7 , 1)

NO$ is compared against the scale of notes in VNS with INSTR to set
NI to the number of the note on the scale. The actual YI position can now
be calculated.

480 Vt4$= " CDEFGAB " , N1 = H lSTR(1 , Vtl!li
, NO$) , Y l =(PL*40)+22-(N1 *2)

Octave can only be 2 or 3 so we only need a check for 3 in position five to
know whether to move Yl up for the higher octave.

490 IF M ! D$(PA$(PL) , X 1 +6 , I)=" 3 "
THEN '/ 1='(1-14

227

Advanced Sound and Graphics for the Dragon CQmputer

The length of the note is extracted as the second and third characters
(LN$) and this is converted to a number by taking the VALue.

500 LHS=MIDf(PA$(PL), Xl +3, 2)
5 1 0 LN=VAL(Lt!$)

Now we divide the actual note length by 4 to GOTO the routines to
actually PUT the notes. These are very similar to those described before.
520 Ot� (LH/4) GOTO 540) 550, 560) 5
70
530 GOTO 580
540 PIJT(.X2-3) 'r' l -:3)-(X2+3) Yl +3)) S
8, At!D , GOTO 580
550 I F N 1 < 7 THEN PUTC X2-3 , Y1 - 1 0)
-(X2+3, Y 1 +3), 111 , At·lD , GOTO 580 , ELS
E PUT(X2-3, Y l -3)-(X2+3 , Y 1 +1 0), M2
, At!D , GOTO 580
560 I F N 1 (7 THEN PUTC X2-3 , Y l - 1 0)
-(X2+3, ',' 1 +3 j, C 1 , Atic, , GOTO 580 ' ELS
E PUT(X2-3 , Y 1 -3)-(X2+3 , Y 1 + 1 0) , C2
, AND , GOTO 580
570 I F N 1 < 7 THEN PUT(X2-3 , Y l - 1 0)
-,(X2+8, Y 1 +:3), Q l , mm , GOTO 580 , ELS
E PIJT< X2-3 , Y1 -3)-(X2+8 , Y 1 + 1 0) , Q2
, At·ID , GOTO 580

If the last character is " fl:'' or " - " then the sign is PUT in the appro­
priate position.
580 I F MI D$(PAS(PU, X 1 +8 , 1)= " II "
THHI PUT< X2- 1 1 , Y l -3)-(X2-4, Y l +3)
, SH, PSET
590 IF M ID$(PA$(PU, X1+8, 1)= " - "
THEN PUT(X2-7 , Yl-7)-(X2-3 , Y 1 +3),
FL, AND

The left/right coordinate (X2) is incremented by 20 and the next note
taken.
600 X2=X2+20 , t!EXT X 1 , PL , RETURN
"S" = save/load

"S" leads to a save/load routine which allows you to SA VE the strings on
tape as ASCII files and reLOAD them to recreate both sound and graphics.
After SA VEing the cursor is returned to the top of the hi-res screen.

228

Chapter 17 Graphic Music Editor

190 IF A$= " S " THEM 6 1 0
6 1 0 CL:3 , PRi tH�228, " " ; , lt-lPUT"[)O 'I
OU �H SH TO LOAD CiR SAVE " ., Z$
620 IF LEFT$(Z$, 1)= "L" THEN 660
ELSE IF LEFT$(Z$, 1)< > " S " THEM SC
f<:EEtH , 0 , GOTO 20
6:3>) lt-lPUT " F I LE MAME" ; t·lA$ ' OP Et� "0
" , #- ! , MA$
640 FOR L I =! TO 4 • PR ! tff#- 1 , PA$(L
I) ; • MEXT L I • CLOSE#-1
650 L l = l • '/=48 • :�=40 • t·l0=7 • GOTO 20

After LOADing the cursor position is set to the top and the PLAY
routine automatically called.

660 lt-lPUT" FI LE MAME" ; t·lA$ ' OPEt-l'' I "
, #- ! , MA$
670 FOR L I = ! TO 4 • I MPUT#-l , PA$(L
I) ; • MEXT L I • CLOSE#-1
680 L I = l • Y=48 • X=40 • M0=7 • A$= " P " • G
OTO 1 80

Any other key will fall through to line 200 and return to 20.
200 GOTO 20

229

CHAPTER 18

Beyond BASIC

Although you can do a great many things with BASIC programs there will
always remain certain things that you would like to do but which you firi.d
impossible. Often you feel that you cannot move things fast enough, or
that your programs take up too much memory. The solution to these prob­
lems lies deeper inside your Dragon where you must get to grips directly
with its internal workings. There is not enough room to go into detail here
on this complex subject but we will give you some examples and pointers to
show what is possible, whet your appetite, and perhaps start you on your
way to exploring this fascinating area.

Before we start you must clearly understand how your Dragon carries
out your commands. First you must realise that the 6809 microprocessor at
its heart can only really understand instructions if these are given to it as
numbers, and that the BASIC interpreter converts programs written in
pseudo-English into these numbers so that they can be acted upon. As
BASIC is an interpreted language your lines are re-read every time the pro­
gram passes through them. If you can alter these lines whilst the program is
running then you will be able to change the program itself.

You have already met the commands PEEK and POKE in other con­
texts, but now let us look at another way these can be very useful. In case
you have forgotten let us remind you that PEEK tells you what is in a par­
ticular memory location and POKE will put any number from O to 255 into
a memory location.

Poking into your program
You will remember that when we developed the program to write text on
the hi-res screen using GET and PUT we had to type in separate DIM, GET
and PUT lines for each character as the BASIC interpreter will not allow
you to rename the array you want to use. That is very tedious, of course,
but in addition all those lines eat up memory. There must be some solution
to this problem so why not do a little PEEKing around in the memory loca­
tions which contain your BASIC program so you can see how this is stored.
We will position the key lines DIM, GET and PUT at the end of the pro­
gram and add RETURN to each so that we can call them as subroutines.

231

Advanced Sound and Graphics for the Dragon Computer

1 00 [,I t1 CZ(1 B) , RETUl<'.t·l
1 1 0 GET(G 1 , El)-(G2, E2) , CZ, G , RETU
Rt�
1 20 PUT(P l , Ul)-C P2 , U2) , CZ , NOT , RE
TURN

Finding the end

As these are the last lines in the program we know that they must be just
before the end of the program, and if we look in locations 27 and 28 we can
find out where that is, as these two bytes always contain the address of the
end of the current program. We will define this position as the variable EN.

10 Et·l=PEEK(27 lt256+PEEK-'. 28)

To look at our program we must PEEK at the locations before this
marker. The following line will look at the last 69 memory locations of the
program and will print out memory location address (N), negative offset
from the end marker (EN-N), number in that location (PEEK(N)), and the
character corresponding to that number (CHRS(PEEK(N)).

20 FOR t�=(Et�-68)TO HJ , PR ! tH t� ; "
" ; (Efl-N l; " " _; PEEK(t�) ; "
" ; CHR$C PEEKC N)) , NEXT N

If you RUN this now you will see four changing columns which are
something like those shown in Table 18.1. (In addition to the characters
shown on the print-out in our table some graphics characters will also
appear at the right of the s�reen. These are not acceptable to our printer
and it has therefore ignored them). If you find that the actual location
numbers differ from those printed then you have probably got a different
number of spaces in your program, or you have previously used PCLEAR
to set a different number of graphics pages from the default of 4. This does
not really matter for the moment. Look closely at the last column of our
table, LIST the program on the screen, and compare the characters with
the last three lines of the program. You should be able to recognise parts of
it. For example locations 7842 and 7843 contain C and Z, and 7838 and
7839 contain U and 2. Much of tl)e rest of the output appears as garbage
because the system uses certain numbers to define BASIC commands
instead of storing each character of the command word. The key points as
far as we are concerned are those that name the array to be; used. If you
look at all the locations listed you will find that these appear as follows:

232

Chapter 18 Beyond BAS/0

7787 C
7788 z (in the DIM)
7817 C
7818 z (in the PUT)
7842 C
7843 z (in the GET)

Table 18.1

PEEKING AT THE END OF PROGRAMS
address
7:3 1 9
7820
782 1
7:::22
782:3
7824
7825
7826
7827
7828
7829
?S:30
78:3 1
78:32
78:33
78:34
7835
78:36
78:37 '""'.?·-,::,
7:3:39
7840
7:,:41
7842
784:3
7:,44
7845
7846
7847
7848
7849
7850
785 1

offset
:3:3 :?,2
:3 1
30
29
28
27
26
25
24
23
22
2 1
20
19
18
1 7
1 6
1 5
1 4
1 :3
1 2
1 1
1 ')
9
8
7
,J

4

2
1

PEEK CHR$(PEEK)
1 45

:3,:1
170
0
1 20
1 80
40
80
49
44

49
4 1
1 96
4,3
80
50
44
85
5(1
4 1
44
6?
90
:3
44
1 92
58
1 45
0
0
0

I�

p
1

IJ
1
)

T

p
2
IJ
2

C z

p

233

Advanced Sound and Graphics for the Dragon Co,nputer

7852
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7:300
7801
78k'.12
7803
7:304
7805
7806
7:307
7:308
7809
78 1 0
78 1 1
78 1 2
78 1 3
78 1 4
78 1 5
78 1 6
78 1 7
78 1 :3
78 19
7820
782 1

0

��
66
65
64
6:3
62
6 1
60
59
58
57
56
r.r. -.J.J

54
5:3
52
5 1
5 0
49
48
47
46
45
44
43
42
4 1
4 0
39
:38
37
36
:35
:34

Changing the array names

69
67
9i21
4,3
49
48
4 1
58
1 45
0
30
144
0
1 1 0
1 79
40
7 1
49
44
69
49
4 1
1 %
40
7 1
50
44
69
50
4 1
44
t,,·

90
44
7 1
58

E
C
z

G
1

E
1

T
(
G
2

E
2

I'

z

Now try POKING location 7843 with different numbers (as direct
commands) and then LISTing line 120

234

e9 POKE 7843, 65

Chapter 18 Beyond BASIC

1 20 PUT(P 1 , IJ 1)-(P2 , U2) , CA , NOT , RE
TURt·l

Look closely and you will see that the array name used in the PUT
command is now CA instead of CZ! (65 is the ASCII code for A).

POKE 784:3 , 66

will produce:
1 20 PUH P l , Ul)-(P2, U2) , CB, NOT , RE
TURt•

You can also POKE the same place by defining it in terms of a negative
offset from the end of program marker. The offset for 7843 is - 9.

POKE EN-9 ., 67
gives
1 2(< PUT(P l , Ul)-(P2, U2) , cc , t·lOT , RE
Tuni

The offsets for Z in the DIM and GET lines are - 67 and - 37,
respectively.

The absolute value of the end of program marker will-change if you alter
the length of the program but if you define the position you want to POKE
as an offset from this then you will always produce the correct result pro·
vided that you do not alter the program after your key point. This is the
reason we put these lines at the end of the program. No matter how much
you add before them the offset from the end will always be correct. Even if
you RENUM to change the program line numbers it will work. Another
very important factor is that the POKE can also be made from within the
program. Add this line, RUN and LIST.

:30 POKE EN-9, 68
gives
120 PUT(P l , U l)-(P2 ., U2), CD, tKIT , RE
TURN

So now we can reach the parts other methods cannot reach and modify
our program as it is actually running how can we apply this in practice?

235

Ad11anced Sound and Graphics for the Dragon ComAJ,1/er

What can I POKE
POKEing around in your program is not a particularly dangerous
occupation. The worst that can happen is that the system crashes and you
lose your program, but perhaps you'd better CSA VE a copy now if you like
to POKE at random. The most straightforward way to apply this POKE
idea to dealing with GETting and PUTting characters would seem to be to
use the actual character in the array name. Unfortunately life is not quite
that simple as many of the characters have other meanings when in a pro­
gram line. For example the colon (:) is used to separate commands.

Think back to what is normally a valid name for a variable and you will
know which characters you can and cannot use. One or two characters are
allowed, the first one must be an upper case (capital) letter, and the second
can be a letter or a number. If you use only one character to define the array
then you are limited to 26 different arrays. On the other hand with a letter
followed by a number you can have 26*10 = 260 arrays different arrays,
and with two letters another 26*26 = 676 which gives a total so large that
there should be no difficulty in making enough arrays for all the characters
you might need (even if you do nothing but design characters for the rest of
your life!)

Rather than getting into discussions on the best way to code each cha­
racter we will just give you the listing below which contains a straight­
forward modification which changes the array name for the characters A
to Z, as an example, and we leave the rest to you. The reduction in the
memory requirement is dramatic as the whole program can now be fitted in
well under lK. Don't forget that you can also POKE the 'action' of the
PUT command in the same way to give global changes in the way the array
affects the screen.
1 EN=PEEK(27):t.256+PEEK(28)
10 Pt10DE 4 ., 1 • SCREEH1 .• 0 • PCLS1 • COL
OR0 , 1 • CLOADM"MCHAR2"
15 FOR N=48 TO 5? • POKE EH-9, t·l • GO
SUB 2000 • NE><T t·l
1 6 FOR N=65 TO 90 • POKE EH-9, fl • GO
SUB 2000 • NEXT N • D I M BL0:: 1)
40 :i<=l : S=7 : A::::5 : 8=7
50 FOR N=48 TO 57 • POKE Et,-22, t, • G
OSUB 1 900 • '.�=X+S8 • NE><T t,
55 FOR N=65 TO 90 • POKE EH-22 ., fl • G
OSUB 1 900 • X=X+S • NEXT N
500 PCLS • �:=2 • Y=0 • S=6 • T=8 • :,:s=2 • :,:E
=253 • YS=0 • 'lE= 1 9 1
5 1 0 C$= 1NKEY$ • PUT< :,,: , Y)-(X+A, 't'+B)
�. BL , NOT • PUT(X, Y)-(X+A , 'l+B), BL ., t,O

236

Chapter 18 Beyond BASIC

T • I F C$= " " THEN 5 1 0 ELSE IF C$="
�· THEN 1 620 ELSE C=ASC(C$) • I F C
< 48 OR C:>57 THEN IF C<65 OR C>91

THEN 1 500
520 POKE Et,-50, C , GOSUB 1 800
530 IF FL= l THEt, PUTC� . '0-(X+A, Y
+B+l) , BL , NOT
540 X=X+S • IF X>XE THEN X=l • Y=\'+T
• IF Y >YE THEN 1 6 1 0
550 GOTO 5 1 0
1 500 IF C=:32 THEN PUT(�;, '0--'.X+A,
V+B) ., BL, PRESET , X=X+Q , GOTO 5 1 0
1 5 1 0 IF C=8 THEN �:=x-:3 , GOTO 1 560
1 520 IF C=9 THEfJ)s=X+S , ,�OTO 1 560
1 530 IF C=94 THEN Y='t'-T • GOTO 156
0
1 540 IF C=10 THEN 't=\'+T • GOTO 1 56
0
1 550 GOTO 51€1
1 560 IF X< :�s THEN X=X:3
1 570 I F),; >>(E THEt, :�=:,,:s , Y='t'+ T
1 580 IF Y<YS THE� Y=YS
1 590 IF Y>YE THEt, Y='l-T
1 600 GOTO 5 10
1 620 IF FL=l THEN FL=0 • GOTO 5 1 0
ELSE FL=l • GOT05 1 0
1 800 PUTC X , 'l)-(X+A, Y+B) , CT, PSET •
RETURt,
1 90(1 GET< X ., Y)-(:�+A , 'f+B), CZ, G , RET
URN
2000 D I M CZ(1) , RETURt·i
Hidden graphics modes
The Video Display Generator chip used in the Dragon is a general purpose
device which is also capable of producing extra display modes which are
not available through Microsoft Colour BASIC. However to be able to

work in these modes you must take direct control of the VDG, which
means life gets complicated and you must learn how the various modes
operate.

Semigraphics
The low-resolution graphics display available through BASIC is actually
semigraphics mode 4, in which each character position of the text display is
divided into 4 elements (Figure 18.1), and each character position takes up

237

Advanced Sound and Graphics for the Dragon Computer

one byte. There are three parts to this byte. The first bit is 1, which indicates
that this is a semigraphics mode, the next three bits code for the colour, and
the last four bits indicate whether each element is on or off. Since the
colour code can only be set for the whole character position you cannot set
different elements to different colours.

Figure 18.1
s: 1: t1 I G R A P H I C S: n o D E 4

L 8

L 1

C O L O U R O t-l O F F

This mode is set up automatically by the BASIC interpreter when you are
using the text screen but the other semigraphics modes can only be
obtained by POKEing to certain addresses. Even when these different
modes have been set up in this way you can only alter the screen display by
POKEing to screen memory (or using machine code) and in practice this
means that these modes are rather fiddly to use. Details of the necessary
POK.Es are given in the examples below.

Semigraphics mode 6
Semigraphics mode 6 divides each character position into six elements and
uses the same amount of memory as semigraphics mode 4 (Figure 18.2).
The first bit is set to indicate semigraphics, and only the second bit is used
to code for colour, so that only two colours can be indicated. The rest of the
bits indicate on/off status and only one colour can be used in each cha­
racter position. The colour set is either blue/red (if bit 4 of 65314 is set) or
magenta/orange (if bit4 of 65314 is 0). This mode is not particularly useful

238

Chapter 18 Beyond BASIC

but the following demonstration shows it filling the screen with each of the
graphics characters in turn.
10 POKE 65314, PEEK(653 14)+16
2(1 F'Ol<E 65472, �3 = POl<E 65474., 0 : F'OK
E 65476) 0
:30 GOSUB 1 �:1(1
40 POKE 65314, PEEK(65314)+24
50 GOSUB 10[1
60 GOTO 6121
100 FOR CH=128 TO 255
110 FOR SC=1024 TO 1535
120 POKE SC , CH
130 t·lE:•<T SC .. CH
140 RETURt�

Figure 18.2

S E t1 I ,:; �: A P H I C S t1 0 D E E:

L 5 L •l

L 3 L 2

L 1 L O

I I c o I L..
'--r-'

C O L O U �: O t·l O F F

Semigraphics modes 8, 12 and 24

L O

Semigraphics modes 8, 12 and 24 are more interesting. They give you con­
trol of smaller elements (64*64, 64*96, and 64* 192 pixels, respectively) and
allow you to use all eight colours in the same character position. They also
include normal text in the display (something which of course you cannot
normally do in the BASIC hi-res modes). In each case the character posi­
tion is divided into 'N/2' rows of two elements (Figures 18.3- 18.5) and

239

Advanced Sound and Graphics for the Dragon Computer

any of the eight colours can be specified for each row. However as one byte
is used to code for each row more memory is needed (2-6K). In all these
bytes the first bit is set to 1, the next three used to code for colour, and the
last four to indicate on/off status. The following demonstration sets pixels
to random colours in each mode to show the degrees of resolution availa­
ble.

1 0 CLS8 • PMODE 4 , l • PCLS 1
20 POKE 65472 , 0 • POKE 65475., 1 • POK
E 65476, 0 • H=63 • GOSUB 100
30 POKE 65472, 0 • POKE 65474 , 0 • POK
E 65477 , 1 • H=95 • GOSU8 1 00
40 POKE 65472 , 0 • POKE 65475 , l • POK
E 65477, 1 • H= 19 1 • GOSUB 100
50 GOTO 50
100 FOR Ltl" 1 TO H
1 10 FOR CL=! TO 3 1
1 20 POKE 1 024+Lt·U'.32+CL, RtJ[l(1 27)+
1 28
130 tlEXT CL, U1
300 CLS8 · PCLS 1 • RETURt·l

Figure 18.3
:S E f1 I G f. A P H I C S f1 0 D E 6

L 7 L 6

L 5 L i

L 3 L 2

L 1 L O

240

L3
L l

L 2
L O

Chapter 18 Beyond BASIC

Figure 18.4

S E r-l ! G R A .P H I C S 11 0 D E 1 2

L 1 1 L 1 0
L 8 L S
L 7 L 6
L 5 L 4
l.. 3 L 2
L 1 L O

� :., r. 1
1 C 2 C l c o L 8 L 8
1 C 2 C l c o L 7 L B
1 C 2 C 1 c o L 5 L 4
1 C 2 C l c o L S L 2
1 ,-:2 C 1 ,_: o I 1 I n

- I C u L O U R O H O F F

CLS8, PMODE 4,1 and PCLSI are included as a convenient way of
wiping the text screen and the first four pages of video memory clear before
starting, and between modes, as ihere is no built-in screen-clearing routine
for these non-implemented modes. If you use these modes you can have.
eight colours in 'hi-resolution' but you will need to do a lot of planning to
get your display correct without all those Useful graphics commands
available in Microsoft Colar BASIC.

Including text

The normal text is generated within the VDG when a number less than 128
is received but to put this text on the screen in these special modes you must
send the character code repeatedly. The number of repeats is the same as
the number of the semigraphics mode, with a horizontal slice of the cha­
racter being sent at each repeat. If you add these modifications each mode
will be labelled. The numbers are inverted as the screen codes are not the
same as ·the ASCII codes (as explained earlier).

241

Advanced Sound and Graphics for the Dragon Computer

Figure 18.5

1 C2
1 C 2
1 C 2
1 C 2
1 C 2
1 C d
1 C: 2
1 c:,,
1 C 2
r C 2

S E M I G R R P H ! C S M O D E 2 �

C l
C 1
C 1
C 1
C 1
C l
C 1
[: 1
C 1
C l
C 1

Ur
L 1 ,3
L 1 7
L 1 5
L 1 8
L 1 1
L 9

lJ
(·3 t l
r o c o
c o

c o

c o

1_: o
c o

1- 0 c o
c o c o

l 2 :�
L 2 1
L 1 ::1
L 1 7
L 1 5

L 1 :�

l 2 ;i
L 2 0
L 1 e
L 1 8

L 1 1
L 1 d

L 2 2
L 2 0
L 1 8
L 1 8
L 1 4
L 1 2
L 1 0
L 8

[�
I ..-1

t o

L 1 1
l 9
L 7
L 5
L ::::

L 1
L B
L 8
L 1
L 2

0

.J.._ 1 -�i- -t 1 c o L 1 Lei-
- -
L U L O U R

-
O N U F F

H J CLS8 • Pt·10DE 4 ., 1 • PCL,3 1 • M=255 • S
T= 1 024
20 POKE 654 72) 0 : POt<E 654 75 . , 1 : POi<
E 654 76 ., 0 • H=63 • R=8 • M$= "SEMI GRAPH
! CS 8 " • GOSUB 1 00
:30 POKE 65472 , 0 • POf<E 65474., 0 • POr'.
E 65477, 1 H=95 • R= 1 2 • t•1$= " SEM I GRAP
H ! CS: 1 2 " • GOSUB 1 00
4(1 POKE 654 72 , 0 • POKE 654 7!5 ., 1 • F'Or'.
E 65477, 1 • H= 1 9 1 • R=24 • M$= " SEM i GF:A
PHI CS 24" • GOSUB 1 0(1
200 C0•0 • FOR N=l TO LEN(M$) • M•AS
U M W$(M$, t·L 1 :,::,
2 1 0 FOR CH• ! TO Rt 1 6 STEP :32

242

Chapter 18 Beyond BASIC•

220 POKE :;T +CH+CO, M
230 t·!EXT CH , CO=CO+ 1 , NE:1T tl
24t1 SOUHC• 1 ., 1 6

True graphics
Three extra true graphics modes can also be obtained with suitable POKEs.

64 x 64 four colour mode (lK video memory)
64 x 128 two colour mode (IK video memory)
64 x 128 four colour mode (2K vi_deo memofY)

These are all of lower resolution than the PMODEs available through
BASIC and as they are really of interest only we have omitted details on
setting them up.
Calling machine code subroutines
Machine code is the ultimate language of the microprocessor and even if
you do not go to the extreme of writing programs entirely in machine code
you can use subroutines written in it to improve your programs. We cannot
even attempt to go into the details of 6809 code here, as that would take at
least one whole book on its own (if you think that BASIC is complicated
then you will soon realise that machine code is rather like ancient Sumarian
hieroglyphics by comparison). We will therefore just explain how you can
use machine code subroutines in your BASIC programs, and give a few
examples of sound and graphics routines. All data is given in hexadecimal
base. That may make things look even more complicated but if you want to
get into machine code you are going to have to get used to it sometime, so
you niight as well start now!
CLEARing space
First you need to reserve room in memory to store the machine code you
write so that it cannot be obliterated by BASIC programs or variables. This
is done with the CLEAR command, which is also used to reserve string
space for BASIC programs. To reserve space for machine code a second
parameter must be added, which limits the highest address that BASIC can
use.

Thus:
1 0 CLEAR 2t10

reserves 200 bytes for strings and:

W CLER,: 200 , &H6t10t1

243

Advanced Sound and Graphics for the Dragon Computer

reserves 200 bytes for strings and the area above address &H6000 for
machine code routines.
Entering machine code routines
If you are going to do much work with machine code then you should invest
in an editor/assembler but in the meantime this little program will allow
you to enter code quite painlessly. There is no need to type '&H' to indicate
hexadecimal numbers as this is added automatically. (Assembler listings
are also included for the fortunate).
1 000 CLS , PR INT"START ADDRESS " ; , r
NPUT ST$, ST=VAL("&H"+ST$::O
1 0 10 PRINT"START EtHERHlG DATA"
1 020 PRitH HE,,:$(ST) ; , r nPUT A$
1030 POKE ST, \/AL(" &H"+A$)
1040 ST=ST+ l
1050 GOTO 1020

One major difficulty with machine code is that there are no error- trap­
ping routines built in, so if you make a mistake entering the data the whole
thing can quite easily crash.
Simple sounds
Sound is turned on by loading a byte to address &HFF23, and the tone
sounded depends on the value loaded into &HFF20. The duration depends
on a time delay which you build into the program. This simple routine just
makes a single sound. When you have entered the numbers in the second
column of Table 18.2 from address &H6000 With the loader program
above you call it by EXECuting from the start address. You should be able
to define up to I O separate machine code routines on the Dragon within the
USR n function but, due to a bug in the ROM, USR O is always called no
matter what number you specify. Where no parameters need to be passed
to the routine this causes no problem, as you can simply EXECute the
starting address of the routine to call it.
1 00 EXEC&H6000

If you RUN this BASIC program it will make a single sound and then
report back with OK. If you add 30 GOTO 20 it will repeat until you press
BREAK. Where you need to be able to pass parameters to a machine code
routine the simplest thing is to EXECute it after POKEing values into it.
The tone value used is stored at address &H6009, and the duration as a two
byte number at addresses &H6006 and &H6007, so try experimenting by
POKEing in different values.
244

Chap/er 18 Beyond BASIC

eg

20 POKE &H6007 , &HAF

Table 18.2

DISASSEMBLE
6000 86 3F
6002 87 FF
6005 BE 00
6008 C6 5F
600A F? FF
600[) 5C
600E 26 FA
6010 30 1 F
60 12 26 F4
601 4 39

FROM=6000 T0=60 1 5

23
FF

20

LDA ll3F
STA $FF23
LDX ll00FF
LDB ll5F
STB $FF20
!NCB
BNE
LEAX
Bt�E
RTS

600A
- 1 , X
6008

If you are too lazy to think of values then try
20 POk:E &H6007 ., Rtm(".,HFF)

although we warn you that it will sound a bit like morse code!
If you add

3�1 Pm;E &H6£109 , RND(&HFF)

it will sound a little more like the orchestra tuning up.

Saving your routines
The area of memory reserved for machine code is not saved by a normal
BASIC program CSA VE so you must use CSA VEM and take into account
the address and length of the program. For example this first routine can be
saved by:
CSA\/Et1 " sou-ncl " , &H6000 , &H601 4 , &H l4

Sound effects
Machine code allows you to make more interesting sounds as these can
change tone very rapidly. For example the listing in Table 18.3 produces a
'phaser' type sound. It is entered from &H6100. The BASIC routine below
calls it whenever a key is pressed, but POKEs different values into it
according to whether A or B is pressed to produce two different sounds.

245

Advanced Sound and Graphics/or the Dragon Computer

20 I F PEEK(337> =255 THEil 20 ELSE
I =PEEi((135)

30 I F I =65 THEN POKE8.H6001 ., FF EL
SE IF I =66 THEN POKEl,H600L 3F EL
SE 20
40 EXEC&H61 00
50 GOTO 20

Table 18.3

DISASSEMBLE FRot1=6100 T0=6 1 1 3
6 100 8 6 3F LDA 113F
6102 B7 FF 23 STA fFF23
6 1 05 1F 89 TFR A , B
6 107 F 7 FF 20 STB fFF20
610A 5C INCB
6 1 08 26 FA BNE 61 07
610D 4C I NCA
6 10E 2A 01 BPL 6 1 1 1
6 1 1 0 4F CLRA
61 1 1 20 F2 BRA 6 1 05

Sound tables
It is often useful to be able to set up a sequence of tones to be played, and
these are best organised in a 'sound table' in memory. The program in
Table 18.4 starts from&H6200and reads tone bytes from Table 18.5 which
starts at &H6250 and continues to sound these in sequence until it finds a
zero. Use the loader program to enter some values into this tab1e and listen
to the effect (you will have all the space up to &H64FF available). To speed
things up POKE a smaller value into &H6208.
Inverting the text screen
Normal and inverted characters on the text screen can easily be inter­
converted with the listing in Table 18.6 which makes an EOR (exclusive
OR) of each character on the text screen with &H40. The BASIC program
below will invert the screen every time a key is pressed thus alternating bet ­
ween the two forms.

20 IS,.INKEYS • 1F I $= " " THEtl 20
30 EXEC8.H6500
40 GOTO 20

246

Table 18.4

D ISASSEMBLE
6200 86 3F
6202 B7 FF
62f15 1 0 8E
6209 8E 00
620C E6 A0
620.E C l 00
62 10 27 13
621 2 I F 98
6214 F7 FF
62 1 7 5C
6218 26 FR
621A !F 89
62 1C 30 !F
621E 26 F4
6220 20 E7
6222 39

Table 18.5
SOUt�[, TABLE

&H

6250 A3
625 1 32
6252 A:::
625:3 37
6254 84
6255 56
6256 25
5257 89
5258 FF
6259 85
6260 00

Chapter 18 Beyond BAS/0

FROM=6200 T0=6223
LDA 113F

23 STA $FF23
62 50 LC>Y 116250
80 LOX 110080

LOB , Y+
CMPB 1100
BEQ 6225
TFR B , A

20 STB $FF20
INCB
BNE 62 14
TFR A , B
LEAX - L X
Bt!E 6214
BRA 6209
RTS

No doubt you will be impressed by the speed of this routine which is
virtually instantaneous. If you want to invert only part of the screen change
the two byte start and end address values in &H6501/&H6502 and
&H650A/&650B, respectively. For example if you POKE &H650A with
&HOS then only the top half of the screen will invert.

247

/

Advanced Sound and Graphics for the Dragon Computer

Table 18.6

DISASSEMBLE FROM=6500 T0=650F
6500 SE 04 00 LDX *0400
6503 A6 84 LDA , X
6505 88 40 EORA *40
6507 A7 80 STA , X+
6509 BC 06 00 CMPX *0600
650C 25 F5 BCS 6503
650E 39 RTS

Partial PCLS

The routine in Table 18.7 allows you to fill certain bytes of the hi-res
graphics screens with any number. The main use is in clearing parts of the
screen or setting up a particular pattern. The routine places the values in
&H6601 and &H6603 into consecutive bytes of the screen. This is particµ­
larly fast as it is done in one movement by treating the 8 bit A and B reg­
isters as a single 16 bit D register. The start address of the area to be filled is
at &H6605/&H6606 and the end address at &H660A/&H660B.

20 PMODE 3 , 1 , SCREEN 1 , 0
30 EXEC&H6600
40 GOTO 40

Table 18.7

�i��Sij�M�bE FROl1=6600
Li�=66i�0

6602 C6 55 LDB
6604 BE 06 00 LDX
6607 ED 8 1 STD
6609 BC 1 7 FF CMP>i
660C 25 F9 BCS
660E 39 RTS

#55
*0600
, X++
* 1 7FF
6607

If zeros are POKEd into &H6601 and &H6603 the top three quarters of
the screen will be cleared as for PCLS I, and if &HFF is POKEd the effect
will be as PCLS 4. If &H6601 is POKEd with zero and &H6603 with &HFF
the result is red and green stripes. Experiment with other values remember­
ing that each screen point is controlled by a pair of bits in PMODE 3.

248

Chapter 18 Beyond BASIC

Scrolling
Although the text screen scrolls upwards automaticalJy when the PRINT
position reaches the bottom no scrOlling of the hi·res screen is provided in
Color Basic. The listing in Table 18.8 provides upward scrolling of the
screen, and the routine in Table 18.9 provides a similar downward effect.
The overall effect depends on the values POKEd into tables stored at
&H6740 and &H6840, respectively. These values can be stored as DATA
and POKEd in when required. The example below gives smooth control
over the up and down motion of a floating circle with the up and down
cursor keys.

Table 18.8

DISASSEMBLE FROM=6700 TQz671 6
6700 F C 67 40 LDD 56740
6703 10 BE 67 42 LOY $6742
6707 FE 67 44 LOU $6744
670A 4C INCA
6708 AE A l LOX , V++
6700 AF Cl STX , U++
670F 5A OECB
6710 26 F9 BNE 670B
6712 4A OECA
6713 26 F6 BNE 670B
6715 39 RTS

Table 18.9

�,§�S��M�,E
9�ROM=6750

L&8=67i�790
6753 10 BE 67 92 LOY $6792
6757 FE 67 94 LOU $6794
675A 4C INCA
675B AE A3 LOX
6750 AF C3 STX
675F 5A OECB
6760 26 F9 BNE
6762 4A OECA
6763 26 F6 BNE
6765 39 RTS

, --v
, --u

675B

6758

249

Advanced Sound and Graphics for the Dragon Computer

10 DATA 02, F0, 06, 1 0 , 06, 00, 02., Fli:1 ,
08 , EF , 08 , FF
20 FOR N=&H6?40 TO &H6?45 , READ A
$ ' POKE N, VAL< "&H " +A$:, , NEXT fl
30 FOR fl=&H6850 TO &H6855 , READ A
$, POKE N, VAL-: " &H" +A$:, , t!E;,:T t,
40 PMODE 0 , 1 , SCREEN 1 , 0 , PCLS
50 C IRCLE(1 28, 96 :,, 10
60 I F PEEK(33?,=255 THEt, 61i:1
?0 I F PEEK(1 :35)=94 mm EXEC�,H6?
00
80 IF PEEK(135)= 1 0 THEt, E:<EC8,H68
00
90 GOTO 60

2SO

Other titles from Sunshine

THE WORKING SPECTRUM

David Lawrence 0 946408 00 9 £5.95

THE WORKING DRAGON 32

David Lawrence 0 946408 01 7 £5.95

THE WORKING COMMODORE 64

David Lawrence 0 946408 02 5 £5.95

DRAGON 32 GAMES MASTER

Keith Brain/Steven Brain 0 946408 03 03

FUNCTIONAL FORTH for the BBC Computer

Boris Allan 0 946408 04 I £5.95

£5.95

COMMODORE 64 MACHINE CODE MASTER

David Lawrence 0 946408 05 X £6.95

SPECTRUM ADVENTURES

Tony Bridge and Roy Carnell

THE DRAGON TRAINER

Brian Lloyd 0 946408 09 2

0 946408 07 6

£5.95

£5.95

Sunshine also publishes
POPULAR COMPUTING WEEKLY
The first weekly magazine for home computer users. Each copy contains
Top 10 charts of the best-selling software and books and up-to-the-minute
details of the latest games. Other features in the magazine include regular
hardware and software reviews. programming hints, computer swap,
adventure corner and pages of listings for the Spectrum, Dragon, -BBC,
Vic 20 and 64, ZX 81 and other popular micros. Only 35p a week, a year's
subscription costs £19.95 (£9.98 for six months) in the UK and £3'n40
(£18.70 for six months) overseas.
DRAGON USER
The monthly magazine for all users of Dragon microcomputers. Each issue
contains reviews of software and peripherals, programming advice for
beginners and advanced users, program listings, a technical advisory
service and all ihe latest news related to the Dragon. A year's subscription
(12 issues) costs £8.00 in the UK and £14.00 overseas.
For further information contact:
Sunshine
12- 13 Little Newport Street
London WC2R 3LD
01-734 3454

Printed in Ena]and by Commercial Colour Praf, London E. 7.

	1
	lc-p001
	lc-p002
	lc-p003
	lc-p005
	lc-p006
	lc-p007
	lc-p009
	lc-p010
	lc-p011
	lc-p012
	lc-p013
	lc-p014
	lc-p015
	lc-p016
	lc-p017
	lc-p018
	lc-p019
	lc-p020
	lc-p021
	lc-p022
	lc-p023
	lc-p024
	lc-p025
	lc-p027
	lc-p028
	lc-p029
	lc-p030
	lc-p031
	lc-p032
	lc-p033
	lc-p034
	lc-p035
	lc-p036
	lc-p037
	lc-p038
	lc-p039
	lc-p040
	lc-p041
	lc-p042
	lc-p043
	lc-p044
	lc-p045
	lc-p046
	lc-p047
	lc-p048
	lc-p049
	lc-p050
	lc-p051
	lc-p052
	lc-p053
	lc-p054
	lc-p055
	lc-p056
	lc-p057
	lc-p058
	lc-p059
	lc-p060
	lc-p061
	lc-p062
	lc-p063
	lc-p064
	lc-p065
	lc-p067
	lc-p068
	lc-p069
	lc-p070
	lc-p071
	lc-p072
	lc-p073
	lc-p074
	lc-p075
	lc-p076
	lc-p077
	lc-p078
	lc-p079
	lc-p080
	lc-p081
	lc-p082
	lc-p083
	lc-p084
	lc-p085
	lc-p087
	lc-p088
	lc-p089
	lc-p090
	lc-p091
	lc-p092
	lc-p093
	lc-p094
	lc-p095
	lc-p096
	lc-p097
	lc-p098
	lc-p099
	lc-p100
	lc-p101
	lc-p102
	lc-p103
	lc-p104
	lc-p105
	lc-p106
	lc-p107
	lc-p108
	lc-p109
	lc-p110
	lc-p111
	lc-p112
	lc-p113
	lc-p114
	lc-p115
	lc-p116
	lc-p117
	lc-p118
	lc-p119
	lc-p120
	lc-p121
	lc-p122
	lc-p123
	lc-p124
	lc-p125
	lc-p126
	lc-p127
	lc-p128
	lc-p129
	lc-p130
	lc-p131
	lc-p132
	lc-p133
	lc-p134
	lc-p135
	lc-p136
	lc-p137
	lc-p138
	lc-p139
	lc-p141
	lc-p142
	lc-p143
	lc-p144
	lc-p145
	lc-p146
	lc-p147
	lc-p148
	lc-p149
	lc-p150
	lc-p151
	lc-p153
	lc-p154
	lc-p155
	lc-p156
	lc-p157
	lc-p158
	lc-p159
	lc-p160
	lc-p161
	lc-p162
	lc-p163
	lc-p164
	lc-p165
	lc-p166
	lc-p167
	lc-p168
	lc-p169
	lc-p170
	lc-p171
	lc-p172
	lc-p173
	lc-p174
	lc-p175
	lc-p176
	lc-p177
	lc-p178
	lc-p179
	lc-p180
	lc-p181
	lc-p182
	lc-p183
	lc-p184
	lc-p185
	lc-p186
	lc-p187
	lc-p188
	lc-p189
	lc-p190
	lc-p191
	lc-p192
	lc-p193
	lc-p195
	lc-p196
	lc-p197
	lc-p198
	lc-p199
	lc-p200
	lc-p201
	lc-p202
	lc-p203
	lc-p204
	lc-p205
	lc-p206
	lc-p207
	lc-p208
	lc-p209
	lc-p210
	lc-p211
	lc-p212
	lc-p213
	lc-p214
	lc-p215
	lc-p216
	lc-p217
	lc-p218
	lc-p219
	lc-p220
	lc-p221
	lc-p222
	lc-p223
	lc-p224
	lc-p225
	lc-p226
	lc-p227
	lc-p228
	lc-p229
	lc-p231
	lc-p232
	lc-p233
	lc-p234
	lc-p235
	lc-p236
	lc-p237
	lc-p238
	lc-p239
	lc-p240
	lc-p241
	lc-p242
	lc-p243
	lc-p244
	lc-p245
	lc-p246
	lc-p247
	lc-p248
	lc-p249
	lc-p250
	lc-p251
	lc-p252
	z

