advanced
sound &graphics

for the Dragon computer

including machine code subroutines

keith & stevenbrain

advanced
sound &graphics

for the Dragon computer
including machine code subroutines

keith & steven brain

First published 1983 by:

Sunshine Books (an imprint of Scot Press Ltd.)
12—13 Little Newport Street,

London WC2R 3LD

Copyright © Keith and Steven Brain

ISBN 0946408 06 8

All rights reserved. No part of this publication may be reproduced, stored
in-a retrieval system, or transmitted in any form or by any means, elec-
tronic, mechanical, photocopying, recording and/or otherwise, without
the prior written permission of the Publishers.

Cover design by Graphic Design Ltd.
Illustration by Stuart Hughes.
Typeset and printed in England by Commercial Colour Press, London E7.

Contents

Page
Introduction 9
1 Sounding Off 11
2 Textand Low Resolution 27
3 HighResolution 37
4 Circles 51
S DRAWing 67
6 Combining the Graphics Commands 77
7 On-Screen Movement 87
8 Copyingthe Screen 105
9 Graphic Presentation of Data 131
10 Three Dimensions 141
11 Rotation of Figures 147
12 Instant Keyboard Access to Hi-Res
Commands 153
13 GETtingand PUTting Hi-Res Characters 177
14 Working on a Grid 187
15 Animation 195
16 Sound Synthesis 213
17 Graphic MusicEditor 219

18 Beyond BASIC 231

Contents in detail

CHAPTER 1

Sounding Off

Play that tune: building up a note sequence, changing tempo, octave and
note length, displaying the tune graphically and adding words to music.
Improve your games with sound effects.

CHAPTER 2

Text and Low Resolution

Displaying characters, CLS, graphics characters, using PRINT TAB,
PRINT USING, RESET, POINT and SCREEN commands.

CHAPTER 3

High Resolution

Setting up the hi-res screen, selecting the resolution andcolours, setting the
PMODE, choosing foreground and background colours, dealing with
individual hi-resolution points.

CHAPTER 4

Circles

Circle is a versatile command which can produce many different types of
curved shape including ellipses, arcs and spirals.

CHAPTER 5

Drawing

Experimenting with the 15 different DRAW commands to introduce fea-
tures such as scale, colour, angles, move and blank move.

Advanced Sound and Graphics for the Dragon Computer

CHAPTER 6

Combining the Graphics Commands

The PIC-MAN demonstrates how to combine most of the hi-res drawing
commands in a single program.

CHAPTER 7

On-Screen Movement

On-screen movement takes many forms. This chapter demonstrates a
number of ways of moving low-res designs and combines them to move a
more complicated picture of a starship around the screen.

CHAPTER 8

Copying the Screen

Copying whole graphics pages, storing and recreating displays, super-
imposing designs, selective erasing, storing screens and reproducing hard
copies.

CHAPTER 9
Graphic Presentation of Data
Bar charts, line graphs, contour maps and pie charts.

CHAPTER 10

Three Dimensions

Presenting a three-dimensional view of an object is a very effective way of
making it look more solid. How to plot in three dimensions. Experiment to
form a 3-D box, tube and graph.

CHAPTER 11

Rotation of Figures

Angled draw commands: drawing at an angle, forming bisected triangles,
rotating triangles and rectangles.

CHAPTER 12

Instant Keyboard Access to Hi-Res Commands

Drawing directly on the screen including single key routines, lines, rub-
outs, circles, ellipses, GET and PUT, changing colours, painting, drawing
with the joystick and labelling diagrams.

Contents in detail

CHAPTER 13

GETting and PUTing Hi-Res Characters

Saving and using DRAW routines: transferring characters between pro-
grams, saving characters as machine code, dimensioning the arrays,
GETting and PUTing characters.

CHAPTER 14

Working on a Grid

A grid system gives a very useful guide when you want to make sure your
figure fits a particular format. Forming the grid, moving around, making a
‘real’ copy and saving it.

CHAPTER 15
Animation
Runner, Sprinter, Flying High, and Oasis

CHAPTER 16

Sound Synthesis

Some synthesiser features: repeating keyboard sound, changing the
tempo, volume control, changing the octaves, and sound ‘envelopes’.

CHAPTER 17

Graphic Music Editor

The editor allows you to enter a piece of music, display it in standard
musical notation on the screen and then play it.

CHAPTER 18

Beyond BASIC

Exploring deeper inside your Dragon: POKEing into your program,
changing the array names, hidden graphics modes, semigraphics, using
machine code subroutines, partial PCLS and scrolling.

Introduction

The main aim of this book is to teach you how to make maximum use of
sound and graphics in your own Dragon 32 programs. The Dragon has
very useful sound and graphics capabilities and the Microsoft Color Basic
employed contains some very powerful commands. However the very
range and versatility of this implementation can be a barrier to the novice
asit can all seem so complicated that he is not really sure where to start. The
book therefore works from first principles, as to be able to develop
impressive programs using these facilities you must understand very
clearly both the basic manipulation of these commands and the best ways
to use each of them. After the straightforward explanations of how to
struggle with sound and grapple with graphics we get down to more
detailed considerations of more complicated problems and the devel-
opment of a series of useful tools and programs. Their value can perhaps
be estimated by the realization that the figures and hi-resolution screen-
copies for this book were created by the programs within it.

The basic format is that a command or an idea is taken and the routines
built up step by step, exploring and comparing alternative possibilities
wherever possible. Wherever relevant copies of the hi-resolution screen
display are included, so that you can see what to expect. Rather than simply
telling you what todo, and not to do, we encourage you to experiment with
different approaches to let you see the results for yourself. As far as possi-
ble retyping of lines is strenuously avoided, but modification of lines is
commonplace. Alllistings in this book are formatted to 32 columns so that
they appear as you will see them on the screen, except that inverse cha-
racters appear as true lower case. In most cases spaces and brackets have
been used liberally, to make the listings easier to read, but be warned that
some spaces and brackets are essential so do not be tempted to remove
them all.

All the routines have been rigorously tested and the listings have been
checked very thoroughly so we hope that you will not find any bugs. Itisa
sad fact of life that most bugs arise as a result of ‘tryping mitsakes’ by the
user. Semicolons and commas may look very insignificant but their
absence can have very profound effects! If you do have problems with the
listings in this book, or with your own programs, don’t forget that the
Dragon has a TRON function which allows you to follow execution of
your programs, and that pressing SHIFT and @ will halt the execution of
the program until you press another key.

Advanced Sound and Graphics for the Dragon Computer

If that doesn’t solve the problem remember that variables are not reset
until you RUN or use EDIT, so you can PRINT them out and seeif they are
legal values. Syntax errors (?SN ERROR) are usually the result of missing
(or excessive) brackets, quotes or string signs ($), or the result of mis-spelt
words, but they can also result if you remove essential spaces. Function call
errors (?FC ERROR) usually arise because you are trying to use an illegal
value in a function. Type mismatch (?TM ERROR) occurs if you mix up
string and simple variables. The use of lots of strings can resultin a out-of-
string space error (?0S ERROR) which is easily cured by CLEARing extra
string space. The maximum length of a string is 255 characters so if you try
toaddtwo long strings together you will get a ?LS ERROR. If you forget to
DIMension an array, the array is too small, or youlook for a negative value
you will get a bad subscript error (?BS ERROR). If the program reaches a
NEXT or RETURN without executing the relevant FOR or GOSUB you
will get a ?NF ERROR or ?RG ERROR. Finally if you try to GOTO or
GOSUB to a non-existent line you will get a UL error. This may be
because you forgotto put a line in or you may have accidentally deleted a
line.

The mythical dragons were colourful and noisy beasts and we hope that
this book will help you to train your contemporary Welsh Dragon to
display similar characteristics, without burning your fingers or too much
midnight oil.

Keith and Steven Brain
Groeswen, July 1983

CHAPTER 1
Sounding Off

First Sounds

Everyone begins life with simple sounds but over the years their vocabu-
lary builds up so why not learn about computer sound in the same way?
We will start with the SOUND command which is the simplest way of
creating sound on the Dragon. It needs two parameters, pitch and dur-
ation.

SOUND n,n

The firstnumber is the pitch and can be any numberbetween 1 and 255
inclusive. Pitch 89 is middle C on the piano.

The second number is the duration which can also be between 1 and 255
inclusive. A value of 16 for the duration is about one second.

For example:

SOUME 1.1

will produce a low note for one second and if we change the pitch to a
higher value:

SOUMD 255, 16

will produce a high note for one second.
In the same way changing the second parameter:

SOUMD 1,169
will produce a low note for ten seconds and
EOUMD 255, 166

will produce a high note for ten seconds.

Advanced Sound and Graphics for the Dragon Computer

Making such simple sounds is not that exciting so put the SOUND
command inside a FOR .. .NEXT loop which will give every tone that can
be accessed by Dragon sound commands in turn in ascending order.

18 FUP H=1 TO 235

STEF ~1

The duration can also be varied by the loop. If we now replace the dur-
ation of 1 by N the sounds will get longer and longer.

28 SOUMD MM

At this point you will probably try to stop the awful noise which is being
produced as it seems as if it will go on for ever (255 gives aduration of about
16 seconds!). However you may be surprised to find that the BREAK key
does not seem to work. In fact when any SOUND is being made the CPU is
so busy that it cannot scan the keyboard and therefore the BREAK key will
only work in the small gap between sounds.

If you want to relate duration to the N variable in the loop then you
usually need to divide it down somewhat to get a sensible length. When you
do this you must take care that you do not produce illegal values (less than
1). The simplest solution is to always add 1 to the calculated value.

UMD ML Ho28+1
Of course any STEP value can be used in the FOR-NEXT loop.

1 =TEF -

An uneven STEP will produce a more interesting SOUND.
18 FOR H=1 TO 255 STEF RMOCS:

Even using FOR. . .NEXT loops you are restricted to a certain sequence
but you could put the pitch and duration values in a DATA statement

which could be READ back when required.

12

Chapter | Sounding Off

FOR t=1 TO 18

OUND P, O
S MEXT M

The above program will SOUND an odd assortment of notes and
although you can use this method to play simple tunes a better way is to
PLAY these. The SOUND command is therefore best left for making long
notes or for playing set, related sequences.

Play that tune

The Dragon has a more powerful method of creating sound through the
PLAY command, which has the syntax:

PLAY A$

where A$ is a string up to 255 characters long. It allows you to define a
whole string of notes and also gives you more control over the way these are
played.

The easiest way to define which NOTEsto PLAY isto usethe letters A-G
to indicate the notes A-G. These are arranged in a set sequence (or scale for
the musically minded). The scale of C is:

CDEFGAB
Compare this with the musical stave as shown in Figure 1.1.

Figure 1.1 Notes on the stave

1= 2 =
=E—Tr—&#
E.? m—
Fo " A

c D E F G A B
To PLAY the scale of C you can type this as a direct command:

FLAY [WEFiG:RE"

Note that the semicolons are optional and they are ignored when the
string is PLAYed. If you leave them out you will hear no difference.

FLAY "CDEFGARB"

Advanced Sound and Graphics for the Dragon Computer

In general we tend to leave out the semicolons as they take up space, but
it is sometimes useful to put some in as they can make sequences easier to
read.

(Although it is also possible to define the notes by the numbers 1 to 12
this can get very confusing so forget that idea for the moment).

If you have the sheet music for a tune you can copy the notes into a
string, but anumber of other factors must also be taken into consideration.
Toillustrate the various parameters which must be taken into account let’s
look at entering the tune of a well known Christmas carol. The notes are as
follows:

18 PLAFFCFGCAGABAGFFEDEFGREDCE
HEAGAFGECCFFEFGFCAGREAGHEAGFEF
ERGFF"

If youRUNandare very observant you might just recognise that the
computer is trying valiantly to PLAY ‘O come all ye faithful’, but is
somewhat flat! To correct this we need to indicate which notes must be
flattened. Both flats and sharps are indicated by adding another character
after the note. To FLATten notes you add a ‘-’ after the letter for the
note,and toSHARPen a note you add eithera‘ +’ ora‘ #” after the letter.
The same tune with the appropriate notes flattened is now:

18 PLAY"FFCFLCAGAB~AGFFEDEFGREDC
CCERBRGAHFGELCFFEFGFCAGAE-AGHE-AG
FEFE-AGFF"

The computer may catch youout if you add sharps and flats tonotes at
random, as it is cleverer than you and refuses to recognise B# or C — as
they are not part of the 12 tone musical scale.

Even when you RUN this modified version you will notice that there is
still something wrong. For a start the tune should change octave, at certain
points, into a higher group of the notes A-G. Figure 1.2 shows two octaves
on a stave. To change octave you use:

On
where n is a number from 1-5. The default value is 2. For example:
PLAY"COEFGRE"

is different to

FLAY" D3C0EFGRE

as the second scale is eight notes (an octave) higher.

14

Chapter I Sounding Off

Figure 1.2 Two Octaves

OCTHUE 3]

e .
.-]._ovgu_g]
- ® E F G A B
ECTAVE™T)
e guvﬂ‘lc’)
==]

¢c DE F G A B

When you change the octave parameter the new octave will be used until
you make another change, so you must remember to set it back where
necessary. The amended tune is now:

18 PLAY" 02FFCFGCAGHE-RGFFELEFGRE
GRFGELCFFEF GFCAGHE-F
-AGFEFE-RGFF"

GHE

TheO2atthestartisnotstrictly necessaryinthis case, as octave 2 is used
by default. But it is a good idea to include it as otherwise complications can
arise when you end the string in a different octave and then repeat the
sequence. Enter these lines temporarily and notice the difference between
the first time the string is played and the repeats.

188 PLAY"COEFGREOZCDEFISAE"
119 GOTO 118

The first time through O2 is used for the first scale and O3 for the
second, but O3 is then used for both scales on repeats. To repeat the first
sequence every time add O2 to the front or back of the string.

183 PLAY"O2COEFGREOZCDEFGHE"

or

189 PLAY COEFGREBOZCDEFGRBDZ"

Advanced Sound and Graphics for the Dragon Computer

Meanwhile our carol is still not quite right as some of the notes are
shorter than they should be, and some are too long. The Note Length
Parameter (L) will solve this.

Ln

where n is any number from 1-255 and the default value is 4. As the
number increases the length of the note decreases. L1 is a whole note, L2a
half note, L4 a quarter note etc. If you want to get intermediate values you
can ‘dot’ the note. Adding a full stop after the number will make the value
half as long again.

e.g. L2.

will be 4 note + note = $ note.
The tune with the corrected note lengths is shown below.

10 PLAY"O02FLEFL4CFLEGCLYAGH
L4GFLEFL4EDEFGALZEL 0L
L4BALZBAL4SAF GLY4ELEDLYCFFEFS
JCAGRE-LZALSGAB-AGFLZEL4FE-L2ZALS
GLEFLZF"

Finally we can speed things up a bit by changing the Tempo parameter

(M.
Tn

where n is a number from 1-255.

Notelengthsets the length of time each note is played for relative to the
other notes, but Tempoalters the rate at which all thenotes are played by
the same proportion.

The default value for T is 2 so alter it to 5 and note that although the
string is now played faster the note lengths are still in proportion.

0L
ARG~ L ZAL 4CAE-AGFL ZEL4FE~
L4GLSFLZF"

Wehave already seen that wecanloop around a string torepeat the tune,
but what about a pause for breath at the end of each verse? The syntax of

16

Chapter 1 Sounding Off

Pauseislike N and T but it just waits for the specified time (1—-255) without
making any sound. If weadd PLAY a Pause before repeating we will create
a gap between the verses.

28 FLAY"PSH"
29 GOTO 19

1fwe have different groups of the congregation singing different verses
perhaps we should alter the volume of each repeat. Of course you can
change the volume by twiddling with your TV set but you can also let your
Dragon control the volume, by using the Volume (V) parameter. The
Volume command only differs from the other parameters in that it takes
values from 1 to 31, instead of from 1—255, so it’s no good trying to drown
next door’s stereo with a very high value. The default value is ¢‘V15’* (half

volume).

If we add
28 FLAGY "I
49 GOTO 19

the first time the Volume will be half (V =15) and on repeats the Volume
will be full (V=31).

Ifyouwant to repeat a particular musical sequence or set of commandsit
canbe useful to define these assubstrings which canthen be eXecuted from
the PLAY command with ““X”’. The syntax is:

18 PLAY"AR%:

where A$ is a valid musical string and the semi-colonis ESSENTIAL. You
can execute and re-execute different phrases to make a wholetune. For
example the tune for one verse of ‘O come all ye faithful’ could be defined
as a string and then executed at three different Volumes and Tempos.

28 F‘EH’\“‘T SULSHAS : T
g

Seeing what you are doing

It is possible to display the notes you are PLAYing if you definetheseas a
string and not only PLAY this but also PRINT t. If you use only notesthen
life is very simple:

17

Advanced Sound and Graphics for the Dragon Computer
18 A%="CLEFGAE"

28 PLAY A%
3 PRINT A%

Itwouldbe nicer if you displayed eachnote asit was played, solet’sslice
up the string and PRINT each new note just before it is PLAYed.

28 FOR P=1 TO LEMCRAS
30 BE=MIDS(AS. P, 10

49 PRIMT E%::PLHY EB$
58 MEXT P

It is now easier to detect which, if any, of the notes is incorrect.

Of course ‘real’ strings to be PLAYed tend to be more complicated than
this and, as not all the commands are of the same length, slicing the string
can get more difficult. If we add sharps and flats and values for Volume,
note Length, Tempo and Octave which are less than 10 we can still use only
two positionsin the string to define each command and then slice the string
into two character sections. A little care must be taken in the way the cha-
ractersare entered, as not all arrangements are acceptable. The rule on slic-
ing is that the last character must NOT be a space, so that if a note is not
sharp or flat it must be preceded by a space.

19 A$="TSOIF# - AE- E F C"

28 FOR P=1 T LEMCA®» STEP 2

30 B$=MIDG A%, P, 23

Even longer commands can be accommodated (no spaces at the end!),
although this tends to be very wasteful aslots of spaces must be inserted to
pad each command out to the length of the longest command.

13 A%="Vv31 T5 01 F# - A EB- E
e

2B FOR P=1 TO LEMCA%$) STEP 2

20 BE=MIDE A% P,

-n

and

19 A$=" Y31TiBw 01 F# [H
E- E F c*

28 FOR P=1 TO LEWHCA$: STEP 4
38 BE=MID$ A%, P.4)

Chapter 1 Sounding Off

To make it really easy to see what is going on when copying music or
composing your own tunes we have designed a graphic music program
which displays the music just as it appears on paper. This is described in
detail later but don’t be tempted to jump straight to it as you should study
the graphics commands first so that you understand how it works.

Words and music

If you think for amoment about how we displayed the commands you will
probably realise that instead of PRINTing the command which was being
PLAYed we could PRINT something else instead, the obvious choice
being the words to the tune. When you are adding the words you need to
put the right syllable on the right note and also make sure that you do not
put PRINT anything for commands which are not actual notes (e.g.
changes in octave or note length). The syllables are put as DATA in lines 1
and 2, padding these out with spaces to give a neat display. We need to
READ this DATA and print it only if the current command is a note and so
the commands are sorted by INSTR which compares them with X$, a
string containing all the notes used in the tune. When the next slice is not a
note nothing is READ.

1 DATAD LCOME JALL LYE JFAITH.FU
LL LY FULL CAMD L TRILU
1M, PHAMT L0 LZOME LYE LD
LJCOLME WWE L TO LBEL,THLLE.HEM.

ME . AMD . EE,HOLD HIM
JEORM LTHE LEIHG LOF LA HLGELS
L0 LCOME LLET LS LACLD

FE HIM
2 DATRACOME L LET .US LAD, ORE LHIM
J0 L COME GLET LUS LAD
JORE JHLIM JCHRILET W THE
SLIORL

FEF ol LI © L

FE~ A 3 FLZ EL4 FE-LZ AL4 GLZ
FLZ F"
43 FOR M=1T0 LEMFA$) STEP 2
MIDSC As, H.2 0
HETRC 1, 4%, E 55

Advanced Sound and Graphics for the Dragon Computer

J
i\l
—
Rl

THEM FEAL CH:PRIMT C%

PLAY B%$
HEXT H

O
[

¥

Sound effects

Aswell as being of great value for producing music SOUND and PLAY are
also very useful for producing sound effects. Possible sound effects are
many and varied, but very often use complex changes of parameters to
achieve their effects.

These changes may be part of a preset sequence or may be linked to pro-
gram variables. The commonest problems with sound effect generation are
introducing program-linked changes and accidental generation of illegal
parameter values.

SOUND isthe easiest command to use as variables can be altered directly
as described before, although the noise it makes is not very inspiring,
unless it is repeated with changing parameters. A pitch of 0 is not allowed
so take care that you cannot fall to that value. A simple way to prevent this
is to always add 1 to the variable used in the SOUND command. This
routine PRINTs and SOUND:s every pitch from 1 to 255 at random.

1

A=255

E=RHOC :
PRINT CH-E3
QUMD CA-B3+1.1
GOTO 28

N G o
TEEE T

You canlink different SOUNDs to movement of each key if you scan
INKEY$ and relate the pitch to the ASCI11 value of the key. As SOUND
needs simple variables you must first convert A$ to A.

IMEE'YS: IF A%="" THEH 18
A% 2

2B S0UMD A3

43 GO0TO 19

18 A
4]

T

The loop back if no key is pressed in line 10 is essential to prevent the
crash which would occurifline 20 tried totake the ASC11 value of an empty
string. Differences of 1 unit in pitch are not easy to detect, so why not
multiply A by a factor to make differences between keys greater. The
biggest factor which will not produce illegal values is 2 as 2*127=254.

PLAY is a more versatile command but introducing variables is a little
more complicated because PLAY acts on a string. Any simple variable to
be used must first be changed to string format with STR$ and then added to

20

Chapter 1 Sounding Off

the letter indicating the parameter to be varied. This will play a scale in a
random octave.

B
DA

GOTO 18

As PLAY acts on a string you can make a simple tune directly on the
keyboard byd PLAYing the contents of INKEYS.

28 A%=IMHKEYS
3 PLAY A%
45 GOTO 18

There is no need to check if A $is empty as PLAYing an empty string is
allowed. Of course you can only PLAY keys which correspond to notes
without crashing. A simple way to ensure that only legal values are
accepted is to use INSTR to compare the key pressed with another string
(N$) containing a list of the valid keys.

EFG"
Rl HE A% 28 THEM FLAY

18 H%="HE
39 IF IMS
H&%

Although Volume, Octave, Tempo and note Length can be altered by
changing the actual values, as describedabove, it is sometimes convenient
to use an alternative method which automatically steps the values up or
down. To use this automatic method just add one of these SUFFIXES to
the parameter:

+ adds one to the current value

— subtracts one from the current value
> multiplies the current value by two
< divides the current value by two

Notice that the first two move slowly in steps of 1 unit but that the last
two make more drastic changes as they double or halve the current value at
each step. One point to watch with these commands is that it is very easy to
reach illegal values and crash. For example:

193 PLAY"

will double the default volume level (15) to almost full audio output (30),
but:

21

Advanced Sound and Graphics for the Dragon Computer

183 PLAY "
115 GOTO 185

will crash as a value of 60 has been calculated for the volume.

Increasing and decreasing volume is useful for indicating approach or
retreat of something. For example this produces a police siren which gets
louder as it approaches:

As it stands that starts from half volume and eventually crashes when
V> 31. To start from minimum volume define this separately outside the
loop in line 10, and check in line 30 that not more than 30 loops have been
made.

16 FLAY"1"
3 L=L+1: IF L

THEH =8

If you want the approach to be more dramatic you can replace + with
>, but if you start from V1 you must set V to the actual value of 31 forthe
fourth repeat as another V> will give 32.

18 PLAY"WILETFGY AFG

W2IFG!

FEY:FEYAFG

Games programs usually call for lasers, phasers, zaps etc. and these
usually use very short Tempo and/or Length and changes in Octave and
Volume to produce the desired effect. Here are a few examples, but you
can play for hours to produce even more impressive results!

18 PLAY"TZ55L2SSCOEFGAE" : GOTO 18

werd fast azcending scalel

18 PLAY"T2S55L255C0EFGREBRGFED C
oTo 18

Cascendind and descerdind zcaled

22

Chapter 1 Sounding Off

=1 TO 4:PLAYV"T2
T W-GOTD 18

18 PLAY"DL":FI
SSCDEFGARBD+" : HES

Lincrenent octave

19 PLAY"D1":FOR W=1 TO 4:PLAY"TZ
SSCDEFGABO-": HEXT HM:GOTO 18

Cdecrement octawe s

19 FOR HW=1 T0O
+'IIT2SS0CD

Crmnzrement w0 Tuies o

EF=1:PLAT"Y"+

STRS.H " 01 TZSSOCOCDEDC" - HEST H

Cdecrement wolume

Audio

The final sound function that we have not considered so far is AUDIO
ON/OFF which allows you to connect and disconnect an external signal
from the cassette input lead to the TV speaker. Using this you can play any
type of sound track from the recorder. As the Dragon also allows you to
turn the cassette MOTOR ON and OFF this means you can have total con-
trol of the playback. A simple application of this is in a totally unbiased
computer controlled version of ‘musical’ chairs. If you put a music cassette
in the recorder, press the play button, and RUN then the music will be
turned on for a random length of time.

15 AU IO OM:MOTOR O

HEXT M

38 AUGIO OFF:MOTOR OFF

45 GOTO 18

23

Advanced Sound and Graphics for the Dragon Computer

Another use is to provide spoken instructions for a program whilst a
demonstration is running. You need to record your program with CSAVE
and then record your voice track behind it on the tape after a short gap.
This sequence can be included as a program line with suitable prompts.

CSAVE"name" :MOTOR OM: FOR M
JUUU HEXT H:MOTOR OFF
CLS: F’F‘IHT"NHEH F‘EHD“ TO AD
E TRH PR 'S
¥ ‘% IF U$""" THEM &8

[5]

[3]
T
1
0
2

58338 MOTOR OM:PRINT. . "RECORLIMNG
", "WHEM FIMISHED PRESS H KEYW"
513343 LE=IHKEYE : IF G%="" THEM £B
B4

53358 MOTOR OFF : PRIMT. . "RECORCIM
G EHMDED"

Younow need toadd MOTOR ON:AUDIO ON near the start of your
program, and MOTOR OFF:AUDIO OFF when the track is ended.

13 CLS:PRIMT"WELCOME". . "D0O YOU W
FHT SPOEEM IMSTRUCTIONS"

28 DE=IHEEYS: IF Q%="" THEM 2B
38 IF o "' THEMW 188

43 AUDID OH:MOTOR OH

LL‘- PRIMT"TO STOP PLAYVEACE PR

B
bU PE=IMKEYS IF GH="" THEW &8
198 (rezt of Pro9ramd

A more serious application is to link a spoken track to a learning pro-
gram which tests spelling, vocabulary etc. You can then arrange for a
word to be spoken whose correct spelling or translation must be entered.
You could have a timing check (using the TIMER function) turning the
MOTOR ON and OFF if all the spoken passages were more or less the same
length. A difficulty withthisis that the synchronisation of the program and
voice track can go astray as the motor speed can be rather variable. The
alternative is to make the user press a particular key to start and stop the
tape.

138 AUCTD OH:MOTOR O

118 PRINT "PRESS EMTER TO STOP T

HPE", ..,
128 IMPUT Ll$ AUC IO OFF :MOTOR OFF
133 IMPUT 5 iHE

24

(checking routine)

(5[5

&

GOTO 199

o

Chapter I Sounding Off

25

CHAPTER 2
Text and Low Resolution

The text screen of the Dragon contains 512 positions in a 32 by 16 matrix
and the low-resolution graphics display gives you 2048 points which can be
controlled individually on a 64 by 32 matrix. These use the same area of
memory (addresses 1024 to 1535) so that text and low-res graphics can
easily be mixed.

Characters

The alphanumeric and print control characters are defined by numbers
from 0 to 127 and the numbers from 128 to 255 specify the graphics cha-
racters. Only some of th haracterscan be ddirectly from the key-
board. Some more characters can be selected using the CHRS function and
this program shows all the characters available using this method.

1 CLs

28 FOR H=8 T0 2
28 PRIMT CHR®CH
43 MEXT M

The most important extra characters available using the CHRS$ function
are the graphics characters (codes 128 to 255). These consist of eight sets of
16 blocks in which different segments are blacked out. The print control
characters return blanks and they are not displayable.

There are still some more characters which can be displayed, but only if
you directly change the contents of locations in the screen memory, as the
BASICinterpreterrejects these. All the characters available onthe Dragon
can be displayed by adding the following lines which POKE the numbers 0
to 255 into screen memory.

rU HEXT H

As location 1280 is equivalent to PRINT position 256 these characters
lie below the first set. If you look closely at the two versions you will see
that there are a number of differences. There is a whole extra line of inverse

27

Advanced Sound and Graphics for the Dragon Computer

symbols and numbers in the POKEd version and even when characters
appear in both sections they are not always in the same place. You can use
the extra inverse characters in your programs as long as you POKE them
into place, and the dif ferencesin the order of the charactersmean that you
must be careful if you PEEK at the screen to detect what is at a particular
point. Table 2.1 compares the CHR$ and POKE values.

CLS

The text/low-res screen can be cleared to any of nine colours. The CLS
command has the syntax:

CLSn

where n is a number from 0 to 8.
The codes for the nine colours are:

0— Black 1 — Green

2 — Yellow 3 — Blue

4 — Red 5 — Buff

6 — Cyan 7 — Magenta
8 — Orange

The default CLS, if no number is added, is green but you should realise
that two green characters are available which look the same, but have dif-
ferent codes. CHR$(143) is a graphics character and CHR$(96) is a text
space. Although CLS 1 to CLS 8 fill the screen memory with the appro-
priate coloured graphics character CLS on its own uses CHR$(96) rather
than CHR$(143) which can sometimes cause confusion. To emphasise the
point try entering CLS and CLS 1 as direct commands and then PRINT
PEEK(1280) to see what the screen is filled with.

Graphics characters

As you have already seen codes 128 to 255 define the coloured graphics
blocks, and there are 16 different characters (Figure 2.1) available in each
colour. These blocks can easily be combined to build up a picture (Figure
2.2).

18 CLS B

38 PRINT CHR®: 123 3 CHRS$C 1350, C
HR% 131 2

48 PRIMT CHR$(1225 CHRS!
HR%C 1280

58 PRINT CHRSC 1285 CHRSE 14
HRsC 135

28

Chapter 2 Text and Low Resolution

€3 PRINT CHRS$C1Z20: CHR$O 136060
HRE$(13253

Figure 2.1 Graphics characters

| B N R
Es s &0
e @o W
Wi sl 4d1s]]16

+127=GREEN
+143=YELLOW
+159=BLUE
+175=RED

+ 191 =BUFF
+207=CYAN
+223=MAGENTA
+239=0RANGE

68]

N

Figure 2.2 Forming a picture from graphics characters

As the sequence of blocks is the same for each colour the colour of a
design can easily be changed by adding multiples of 16 to the codes for all

29

Advanced Sound and Graphics for the Dragon Computer

the characters included. The simplest way to do this is to add an increment
variable (I) to each CHR$ number and then change this.

I3

315

I3

[3;

5 R 128+ 1 2 CHRS$Y 126+
I3 CHRSY 12641

If you add this loop the program will show the same design in the next
higher colour each time you press a key.

Z8 FOR H=9 TO 112 3 2
e o HEEYS: IF Gig="" THEM 7&
20 N H

PRINT @

The command PRINT @ allows you to define the PRINT position for
the next character anywhere on the text screen. It has the syntax:

PRINT @ p,‘‘message’’

where p is a number between 0 and 512.
It can be used to position both text and graphics characters.

PRINT TAB

Although it is not mentioned in the manual a PRINT TAB command is
available which allows you to displace the next PRINT position by a spe-
cified number from the present position. The format is:

PRINT TAB(d);*‘message’”

where d is the displacement from the current PRINT position.

PRINT USING

This command allows you to control precisely the format of output to the
screen, or a printer. It requires you to define the format you desire and then
to give an ‘output list> of items to be printed.

PRINT USING format;output list

30

Chapter 2 Text and Low Resolution

There are many different ways of formatting output but in graphics pro-
grams we are only normally concerned with strings. The only relevant
format command is therefore %. If you define the maximum length of a
string to be printed as a number of spaces between two % signs then any
string longer than this will have the end cut off to fit.

19 PRINT"WHAT IS YOUR HAMET!
28 IHPUT A%
30 PRIMT USTHG"% %A%

This canbe useful where you want to prevent an unexpected value, or an
INPUTed message, from upsetting a carefully planned screen display.

SET
The command SET turns the pixel defined by X and Y coordinates to a
specified colour.

SET(X,Y,Colour)

The low-resolution screen is controlled in such a way that pixels of dif-
ferent colours cannot share the same character space, so that on any one
character space there can only be one foreground colour and a black
background, and in fact a pixel on the low-res screen is really only one
quarter of a graphics character. As a demonstration try this:

19 CLS
28 SETC 18, 18,20

The screen is first cleared to green and then you will see that one
characterspace is now occupied by a black block witha yellow squarein the
top left hand corner. If you SET the point to theright, left, up or down to
the samecolour then the command works as expected, and the number of
yellow blocks increases.

SE B,2,2

SETC18.11,27
If you try to SET the point to the left to a different colour (3 = blue) this

works fine:

49 SETC 18,3
butif youtryto SET the point totheright of the first to adif ferent colour

then it doesn’t.

5@ SETC11,18,3)0

3

Advanced Sound and Graphics for the Dragon Computer

Instead of producing alternate yellow and blue quarters this gives a
completely blue top half of a character. The reasons for this are explained
later, but for the moment just accept the fact that you cannot put a dif-
ferent colour on an adjacent pixel unless the boundary between them is a
character boundary. In practice SET must always be used on a black
screen, and youshould try to avoid making linesadjacent wherever possi-
ble. These constraints mean that it is usually better to use hi-res for any
detailed graphics work, although low-res still has the advantages of having
nine colours available at once, and immediate access to text.

RESET

RESET is the converse of SET and turns a particular point off. It is used by
specifying only X and Y coordinates, as the background colour in low-res
is always black.

RESET(X,Y)

Noticethat it is not possible to produce RESET by putting the colour 0in
SET, as the system rejects this.

POINT

POINT looks at a specified pixel and returns the colour code.

POINT(X,Y)

It is mainly used in comparisons in programs to check the state of a
particular point before a decision is made:

180 IF POIMTO X" 5=8 THEM ceveearannrnss

If the POINT tested is black then 0 is returned else if the POINT is
coloured then one of the numbers | to 8 results. However if the POINT
tests a position containing an alphanumeric character the answer is — 1.

SCREEN Command

‘Whenthe Dragon isturned on the text screen is automatically selected with
black text on a green background, and when a program ends the system
always falls back to this display. The actual definition of this state is
SCREEN 0,0, where the first 0 indicates low-resolution and the second 0
indicates the first colour set. It is possible to change the colour set in
low-res, so that text appears as red on orange by SCREEN 0,1, but this
state only continues until the screen contents change or the program ends.

2

Chapter 2 Text and Low Resolution

If you want to use this facility specify SCREEN 0,1 after PRINT and delay
execution of the program.

THEMW 2@

=" THEM S&

Now each time a key is pressed the colour set will change. Only text is
changed and graphics characters appear as normal. The main use of
SCREEN 0,1 is to highlight particularly important screen messages.

Table 2.1

TABLE SHOWING THE CHR$ AND POKE CODES FOR THE FIRST
128 CHARACTERS

CHARACTER CHRS$ CODE POKE CODE

B THN = 5]
3, 7 1
4] 2
=]
o 1 4
& 1 S
t 1 &
Bl 1 v
t 1634 3
ry 185 k]
J 19z 1é
k 18 11
1 1 1z
1 1 132
Wt 111 14
I 111 15
3 11z 15
q 113

r 114

E 115

t 116

1t 117

W 112

L 113

33

Advanced Sound and Graphics for the Dragon Computer

IHY 122
IHY 124
IHY 125
THY 126
IHy 127
E THYW s
THY L
IHY -
THY o
IHY -

[I B £ AN

o

F

I
-0

AR 3

ThY
THY
THV
THY
THY
THY
IHY
IHY
THY
IHY
IHY
THY
THV
THY
IHY
IHY
THY
IHY
IHY
IHY
IHY
IHY
THY
IHV
THV
ITHY =
THY =

[I
I T T

]

SO N AL BN =S N
Tt vy vrreeat

MDD =3 o
m
H

34

S5
55
S
58
59
£9
&1
62
63
64
65
66

Chapter 2 Text and Low Resolution

3
&
[
[
W

s @ 0 R

&
&
&
7
b
=
7
7

U IR SNV SIS Y O R |

rme=Icmmoa

Al

[I o N1

a4

a5

LSPACEEBARD 32
! ox]

W %

S

S

= 4 % ™

35

Advanced Sound and Graphics for the Dragon Computer

SO NOMPB WIS
o
[}

e e
M
—-

36

| RN K SN R O (N VI N

ST A

e s e

CHAPTER 3
High Resolution

Setting up the high-resolution screen

Before you can do any work in high-resolution you must set the system to a
particular hi-res configuration and this means that you must make a
number of decisions.

Resolution
First you must select the resolution (amount of fine detail) needed. Three
different sizes of screen point are available (Figure 3.1) and these are in the
followiiig possible matrix arrangements.

128 horizontal by 96 vertical

128 horizontal by 192 vertical
256 horizontal by 192 vertical

Figure 3.1 Relative sizes of screen points

B croce o
B rroce

] FMODE 2
[FMODE 2
| rHOME 4

37

Advanced Sound and Graphics for the Dragon Computer

One screen point in the highest resolution is one quarter the size of one
screen point in the lowest resolution, and half the size of one screen point in
the middle resolution. Notice that in the middle resolution each point is a
horizontall y-elongated rectangle rather than a square.

Colours

Thenext consideration is the number of colours you want to use. Although
a total of nine colours (well, eight colours plus black) are available onthe
Dragon you can only use these in hi-resolution in a restricted way. Only
two colours or four colours can be used, and the colour mix is also fixed.
The choice of number of colours is made by selecting one of the PMODE
commands 0to 4(Table 3.1). Three two-colour and two four-colour possi-
bilities are provided.

Table 3.1

RESOLUTION AND COLOURS

PMODE HORIZONTAL VERTICAL NUMBEROF

NUMBER POINTS POINTS COLOURS
2 128 95 Thi
1 128 25 FOLE
2 128 TH
2 122 FOUR
4 256 T

Memory requirements and setting the PMODE

The amount of memory needed to support the hi-res display depends upon
the PMODE selected, and ultimately on the amount of detail (resolution)
and colour provided. When the Dragon is first switched on the area from

38

Chapter 3 High Resolution

addresses 1536 to 6143 is automatically reserved for hi-res graphics, but
your actual requirement may be less than this (Table 3.2 and Figure 3.2).
Memory is used in blocks of 1536 bytes, each of which is known as a
‘graphics page’. At power-up four pages are reserved, but this can be
increased by uptoanother four pages. The number of graphics pages reser-
ved can be set by the user with the PCLEAR command. There is no point in
reserving more memory than you need (as it is then unavailable for other
purposes such as program or variable storage) so if you are using relatively
low resolutionuse PCLEAR n to set-up only the required number of pages.

Table 3.2
MEMORY REQUIREMENTS IN DIFFERENT PMODES
PMODE MEMORY (bytes) MEMORY (pages)
5] 1536 OHE
1 2872 TG
2 el raes TW
3 143 FOUR
4 5143 FouUR

Figure 3.2 Arrangement of graphics pages

1526
3072
4608
E1 44
7620
g1 €6
10752
1228

ORI s opO—

39

Advanced Sound and Graphics for the Dragon Computer
eg for PMODE 0 use PCLEAR 1

On the other hand more than four pages are needed for certain program-
ming techniques (see later) so it may be necessary to PCLEAR a higher
number of pages than four.

The PMODE command has two parameters. The first selects the
PMODE and the second defines where in memory this PMODE is to be set
up. The most usual position is page 1, but any reserved page can be spe-
cified. For example PMODE 0 takes up only one page of memory but this
pagecan be any of the eight available pages. Of course you will get an error
report if you try to use a page you have not reserved.

PMODE 0,1 = set up PMODE 0 on page 1
PMODE 0,8 = set up PMODE 0 on page 8

Higher PMODEs spread over more than one page but the second
parameter still defines the start page.

PMODE 2,1 = set up PMODE 2 onpages 1 and 2
PMODE 2,2 = set up PMODE 2 on pages 2 and 3

It is possibletoreservedifferent pages for different purposes at thesame
time, and these can also use different PMODE:s. For example we could res-
erve five pages and set these aside as follows: a) one page for PMODE 0,
two pages for PMODE 1, and two pages for PMODE 2 (Figure 3.3).

FHMOLE

Note that a PCLS command has been added after each PMODE
command toensurethateach pageis cleared. PCLS works like CLS onthe
text screen.

Colour sets and SCREEN

Once you have decided how many colours you need you must decide which
particular colours to use. In each PMODE two alternative ‘colour sets’ are
available and these are selected by the SCREEN command (Table 3.3).

The SCREEN command needs two parameters, of which the colour set
is the first. The second parameter tells the system whether to use the text or
hi-res video memory. The number 1 selects hi-res. For example we will
select colour set 0.

20 SCREEEH @, 1

40

o

Chapter 3 High Resolution

Table 3.3
COLOUR SETS
PMODE COLOUR SET 0 COLOURSETI
black gresn black skt

areensds] lowsbloered bt ooy ansmagenta oranae

black - buft

b f o masentacorange

black- arzen black butf

Figure 3.3 Setting different PMODE:s on different pages
19536
3072
4608
E144
7880
3216

10752
12288

FMODE O

PMODE 1

PMODE 2

oRDIEs oo

It is important to remember that it is the SCREEN command which
actually switches the video display from one part of memory to another. If
you insert atemporaryline 15 GOTO 15 and RUNyou will see thatnothing
seems to happen. Press BREAK, delete 15 and insert 100 GOTO 100 and
RUN again. The normal text screen will now be replaced by the high-re-
solution screen. This hi-res screen will be displayed until all hi-res
commands have been executed, when SCREEN automatically reverts to
the text video memory (SCREEN 0,0). This happens automatically at the
end of a program, hence the need for line 100 which forms an endless loop.

41

Advanced Sound and Graphics for the Dragon Computer

SCREEN always sets the video display according to the last PMODE
specified. What we are actually seeing now is not page 1 but pages 4and 5,
as PMODE 2,4 was thelast command. You can confirm that by inserting
another PMODE command as line 20 to set the last page back to 2, when
the screen will change to green.

28 PMOCE 1.2

1f you change the colour set inline 30 to 1 and RUN again the screen will
appear as buff.

SCREEN 1.1

Foreground and background colours

The first named colour in Table 3.3 is the background colour and the last
named is the foreground colour. This means that the PCLS will clear the
screen to the first colour, and any graphics command in which a colour is
not specifically defined will automatically use the last colour. If you define
a particular colour in a clear screen command by ‘PCLS n’ the screen will
clear to that particular colour (n). But it is important to realise that this
effect is only temporary and does not alter the actual foreground and
background colours. If you want to alter foreground and background
colours you must use the COLOR command which has the format:

COLOR(foreground,background)

23

Thus COLOR(1,2) will produce green on yellow and COLOR(4,3) red
on blue. These settings will remain valid until they are deliberately altered.

Dealing with individual hi-resolution points
PSET

The simplest hi-resolution graphics command is PSET which turns on a
single specified screen point. The format is:

PSET (X,Y,C)

and to use it you set the three parameters X, Y and C.

The first two are the X (horizontal) and Y (vertical) coordinates, which
define the screen position which you want to alter. Although the number of
individual screen points (resolution) varies with the PMODE that has been
specified the coordinates for these commands always use a 256 by 192
matrix so that the centre of the screen is always at (128,96). The actual
physical size of the point produced on the screen will of course depend
uponthe PMODE selected. As the same coordinates are used in all modes

42

Chapter 3 High Resolution

you should not be surprised to find that using slightly different coordinates
in the lower resolutions may produce the same result. For example in
PMODE 0 there is no diffierence between these four commands, as they all
turn on the top left hand screen point.

PSET(0,0) PSET (0,1)
PSET(1,0) PSET (1,1)

The last parameter is the number o f the required colour (which mustbea
‘permitted’ colour, that is a colour in the current set). If a colour is not
specified then the current foreground colour is used. In practice if you
want to use the current colour then the execution is actually quicker if you
do not include the value for this in the PSET command.

You canseetheseeffects quite clearly if you use theselooping routines to
PSET all the screen points in sequence under different conditions, and use
the internal clock to check the time taken.

First in the highest-resolution (PMODE 4):

19 PMOCE 4 1:3CREEM 1.8:FCLS

PRINT "TIME TAKEHW WAS":TIMER~
59; "SECONDI"

This will take about 237 seconds. If you now changethe PMODEin line
10to 0 and RUN the program again you will notice that the program seems
to delay at the end of each line. In fact there is no delay and what you are
seeing is the system PSETing the same points it has already PSET! As there
isno value in PSETing the same point twice we might as well put STEP 2on
the end of lines 30 and 40, and see how much time that saves.

TO 191 STEF 2
g TO 255 STEF 2

FOR
4U FOR

Well, theresult of around 60 seconds is much as you should expect when
only one quarter of the work needs to be done.

The extra work involved when a colour parameter is included can be
shown by changing line 50 so that colour 1 is specified.

S8 PSET (.. 10

43

Advanced Sound and Graphics for the Dragon Computer

The time needed rises steeply to 85 seconds, and the increase due to the
change in defining the colour is actually even higher than it looks (50%), as
19 seconds are taken to complete this series of FOR-NEXT loops when
they are completely empty. The moral should be clear — don’t define
parameters unless you have to!

Parameters can be derived with the command using the usual functions
as shown in this demonstration which turns on points at random on the
lowest hi-resolution screen:

FHOLE &,

FSET «RM
L GOTo

1

Theroutine is more interesting if a four-colour mode is selected and the
colour also picked at random.

PRESET

The reverse of PSET is PRESET which sets the specified point to the
background colour (that is turns it off).

If we PSET and PRESET rapidly we will produce a flashing point on the
screen. Add the PRESETing line 60.

Notice that there is no need to specify a colour with PRESET as the
background colour is always used. In fact PSET can be made to do exactly
the same job as PRESET if the background colour is used as the third
parameter. This cansometimes be useful in programming, especially when
the point colour to be used is calculated in the program. For example the
routine below also produces a flashing point, but this time we will use the
highest resolution PMODE 4.

Notice that we must use a negative step so that colour 0 (background) is
used last.

44

Chapter3 High Resolution

PPOINT

The final hi-res command which acts on a single screen point is PPOINT
which finds the colour of the specified position. To show this working we
will PSET a point at random and then check to see which point was PSET
using PPOINT and two FOR NEXT loops to scan the screen.

5

see
255

PRIMT "POIMT"
93 PRIMT TIMER-59

(notice that you need to use RND(256) — 1 to get numbers between 0 and
255 as RND(255) only gives 1—255).

You will observe that this routine is very slow! For example it takes 75
seconds to find a point PSET at 50,110 and 198 seconds to find a point
PSET at 134,34, Of course we canspeed things up rather by only checking 1
point in 4 by adding STEP 2 to the loops (as this is PMODE 0). That will
now find a point at 68,156 in 28 seconds but it is still rather a painful
process to examine the whole screen.

Une of the main practical uses of PPOINT is collision detection in
games programs. The reason that it is a realistic proposition in such cases is
that here you only select a limited number of positions to check with
PPOINT. For exampleif you have a yellow target and ared missile and you
check for yellow at the missile coordinates you can detect contact. More
experienced programmers amongst you may realise that you can actually
avoid using PPOINT in this example if you keep a record of both target
and missile coordinates and compare them directly. However this alterna-
tive is not possible where a record of the positions is not kept as variables.

PSET and PRESET are relatively slow and the more rapid and powerful
LINE and CIRCLE commands can often be used instead. However
PSET/PRESET are still important in certain applications, for example in
plotting non-linear data and in producing a cursor to indicate screen posi-
tion (see later).

Lines and boxes
PSET can be used to plot a series of adjacent points to form a horizontal
line across the middle of the screen:

45

‘Advanced Sound and Graphics for the Dragon Computer

B FCLS

1933 L:UTU s

If we add this PRESET routine then our line will next be ‘undrawn’ from
the start.

3 HEXT T

118 HEAT

On the other hand we could ‘undraw’ it from the other end with a
decrementing FOR-NEXT loop.

28 FOR TO B STEF -1

Or make it dotted by only PRESETing certain points. We must remem-
ber, however, that in PMODE 1 points are set in pairs and we therefore
need to use STEP 4.

93 FOR S T W STEF -4

If you want to use PSET to draw a line which is neither horizontal nor
verticalthen somecalculations will be needed. Todrawfrom 0,0tc 100,100
forexample, is no problem as it is obviousthat both X and Y must step by
one for each point. However, even if you want to draw to a less regular
point, it is still easy to calculate the appropriate step size by dividing the
distance to be moved onthe Y axis (YE-YS) by the distance to be moved on
the X axis (XE-XS).

Chapter 3 High Resolution

Although you can use PSET in this way to draw straight lines it is
actually much easier to use the LINE command. This is a very versatile
command which only requires that you define the start and end points of
the line in X,Y screen coordinates,and specify foreground or background
colour with PSET or PRESET.

LINE(X1,Y1)-(X2,Y2),PSET
will draw a line from X1,YI to X2,Y2 in the foreground colour and
LINE(X1,Y1)-(X2,Y2),PRESET

will draw a line between the same coordinates in the background colour —
that is it will actually erase the line.

Although the looping PSET routine described above works it is rather
slow. A major advantage of using LINE is that the best fit between the path
of the chosen line and the available screen points is automatically used
without any user involvement, so that the routine is reduced to:

18 PMODES
23 LIMEY
199 GOTO 199

Thisreducesthetime required by a factor of about twenty from 0.86 secs
to 0.04 secs. In practice this means that LINEs appear virtually instan-
taneously.

LINE is often used to connect a whole series of points to form graphs, or
other complex figures. The points may be calculated in the program or
stored in a DATA statement. In this example the DATA is READ into
arrays which are then used in the LINE command. In general the LINE is
drawn from the last point (X(N-1),Y(N-I)) to the next point (X(N),Y(N))
although a special arrangement must be made for the first line, where there
is no last point. As Q is set to 0 in line 60 and reset to 1 in line 90 the first
LINE will in fact be of zero length and drawn at X(N),Y(N).

FHMODES, 1-

47

Advanced Sound and Graphics for the Dragon Contputer

193 HEXT M

812,

45,125

If you want to draw a LINE in a colour other than the current
background or foreground you must first redefine these parameters with
the COLOR command. In this example start and end X and Y coordinates
and the foreground colour (C) are all chosen at random, and then COLOR
is used to ensure that the line is drawn in the chosen colour.

The LINE command can also easily be used to produce rectangular
boxes by adding the suffix B and specifying the coordinates of the top left
hand corner and the bottom right-hand corner.

LINE(X1,Y 1)-(X2,Y2) ,PSET,B

If we merely add this suffix toline 70 of thelast program we will generate
different coloured boxes instead of simply sloping lines.

As usual PRESET will erase the box.

There are two ways of filling in the area contained within the box. The
simplest method is to use the suffix BF (for box filled) which automatically
fills the box with the foreground colour.

7B LIMEC XL, 1 >0 ¥2,Y2), PIET . BF

This will always fill the box with the same colour as that used for the
outline. If you wanttheoutline and contents todiffer youcandraw a filled
box slightly smaller than required and then draw an empty box around this
in adifferent colour. Notice that 2 must be added to or subtracted from the
X coordinates as this is PMODE 3 and points are set in pairs.

48

Chapter 3 High Resolution

PAINTing
An alternative method of filling the box is to use the PAINT command
which will fill any specified area with any permitted colour. The start coor-
dinates must be specified, followed by the colour to be used for PAINTing.
and the final parameter is the ‘border’ colour which tells the system when
to stop PAINTing.

For example:

PAINT(128,96),4,2

means start at, the screen centre (128,96) and turn all points to colour 4
(red)until you reach points whicharecolour 2 (yellow), or if there is now-
hereleft to move then stop.

A comparison of the speed of producing a filled box at (50,50)-(150-150)
by each method shows that LINE ... BF is more than twice as fast as
PAINT (0.8 secs as against 1.7), but against this must be set the greater ease
of specifying the PAINT colour,and the fact that it will fill irregular areas
as easily as boxes. For example try:

18 FMODEZ. 1

LIME" 2
FRIMTO L

Any point within the chosen area can be used as the start position,
although a start point near a corner gives a smoother effect as otherwise
filling does not always seem to proceed in a logical fashion.

A couple of problems often crop up when using PAINT:

49

Advanced Sound and Graphics for the Dragon Computer
I) Nothing happens
Remember that if the start point is already set to the border colour then the

command will end as soon as it starts. Thus this command will have no
effect:

58 PRHIMTC 12,127
2) Paint leaks into unwanted places

a) Remember that this paint is very corrosive and will easily leak
through any minute ‘pinhole’ in the border. Make this very small modifi-
cation to line 50 and watch the disastrous consequences. Once started
PAINTing cannot be stopped, even the BREAK key having no effect.

58 LIMEY

5,99

018,30, PSET

This potential problem can sometimes be turned to advantage if you
want to PAINT a series of adjacent independent areas the same colour, if
youcan deliberately form some leakage points in strategic places.

19 PMOCE3. 1
28 LINEC 18, 18
49 LIME? 38, 4
A8 PRIMTO12.12

This program will produce two adjacent boxes but only the top one will be
PAINTed. To PAINT both at once we must provide a leakage point.

58 PSETC 43, 43,30

b) Remember that you can only specify one border colour so that
PAINT cannot be used to fill an area which is bordered by different
colours. If the COLOR is changed between forming the two boxes the
outlines will differ in colour (first box red and second blue).

)

20 COLOR 2.1

If you now try to PAINT these everything except three walls of the first
box will be turned yellow.

50

CHAPTER 4
Circles

CIRCLE is a very versatile command which can be used to produce many
different types of curved shape. In its simplest form it needs only three
parameters X, Y and R:

CIRCLE (X,Y),R
Xand Y are the screen coordinates of the centre of the circle, and Ris the
radius in screen points (on a 256 by 192 matrix).

A stepped FOR-NEXT loop can be used to produce a series of concentric
circles (Figure 4.1) of increasing radius.

28 PMOCE 4.1
43 FOI A TO

Figure 4.1 Concentric circles

51

Advanced Sound and Graphics for the Dragon Computer

If very large CIRCLES are drawn these will fall outside the screen area
and will appear flattened (Figure 4.2). As the number of points on the Y
axis is 192 the largest undistorted circle which can be drawn has a radius of
96 screen points.

Figure 4.2 Circles falling outside screen area

If the STEP in the FOR-NEXT loop is negative the circles will diminish
in size instead.

48 FOR R

B TO B STER -5

You might expect thata STEP of | (default) would give you a completely
filled circle, but in practice that does not happen (Figure 4.3) and some
areas are left blank.

43 FOR R=5 TO 39

The reasons for these gaps are the approximations which must be made
in fitting the mathematical calculations of the circle circumference to
available screen points. Close examination reveals that no screen circle is
ever completely round but is made up of a combination of short straight
lines. How perfect the circle looks depends on the resolution used. Most of
ourexamplesuse PMODEs 3 and 4, but it is worth comparing the display in
the various PMODE:s (Figure 4.4).

52

Chapter 4 Circles

HEXT R
-TMEEYS IF I$="" THEM 73 EL

If nothing else is specified then the current foreground colour will be
used to draw the circle, but particular colours can also be defined by the
fourth parameter C.

CIRCLE (X,Y),R,C

This is often used to selectively erase CIRCLES by drawing them in the
background colour.

FHODE 4.1
FOF C T

‘Advanced Sound and Graphics for the Dragon Computer

Figure 4.4 Display in different PMODE;s (from top 0,2,4)

As it stands this will draw green circles of increasing radius and then
black circles of increasing radius (Figure4.5) finally leaving a blank screen.

If you move the position of the FOR C....NEXT C loop inside the
radius loop you will produce flashing circles. Delete lines 30 and 70 and
rewrite them as 45 and 55.

413 FOR STEP 18
45 FOR TEF-1
59 CIRCLE ©128,36).R.C

55 MEXAT C
53 HMEXT R

Chapter 4 Circles

Figure 4.5 Erasing circles

Or you could reverse the STEP and erase the circles from the outside in.

2 F=59 TO @ STEP -18
0 CIRCLE (128,980 R.LC
148 HEXT R

Colour can be chosen at random (Figure 4.6):

B FCLS
FS

Or it may be calculated in some way. For example we could relate the
colour to the circle radius (always remembering that the result must be a
valid colour).

43 FOR
58 CIRCLE ¢

55

Advanced Sound and Graphics for the Dragon Computer

Figure 4.6 Coloured circles

Ellipses
Although the command is called CIRCLE it is just as easy to use it to draw
ellipses, by changing the next parameter, HW, the height/width ratio.
CIRCLE (X,Y),R,C,HW
The height/width ratio is simply the height of the ‘circle’ divided by its
width (Figure 4.7). For a real circle the value is I. If the design is short in

relation to its width HW will be less than I, and if it is tall HW will be
greater than 1.

Figure 4.7 H/W ratio of ellipse
. ”_’_,.-w——'-'-————-—.‘_‘___\
T ™
HEIGHT
[»

T HIDTH —

When changing any of these later parameters you must always take care
to include also all the earlier parameters, or chaos will reign. You do not
haveto put actual numbers but you must at least include the commas which
indicate where parameters start and end.

56

Chapter 4 Circles

CIRCLE (128,96)90,1,0.5
or CIRCLE (128,96),90,,0.5

In all these examples we have written non-integer numbers in full for
clarity, but in practice they can be abbreviated as the leading zero is not
essential.

A series of concentric ellipses with the same HW can be produced as
easily as circles (Figure 4.8).

EEHM 1.8:PCLS
STEP 18

If the radius is kept constant but HW varied from 0 to 1 a series of
flattened ellipses of equal diameter are formed (Figure4.9).

43 FOR HW=0 TO 1 STEP 9.1
58 CIRCLE ¢ 122,955 38, 1. HW
58 MEAT HMW

If HW is increased further vertically distortion occurs. Figure 4.10
shows the next ten ellipses from HW 1 to 2 in 0.1 steps. Although HW can
be any value up to 255 large values are not used as they simply give vertical
lines.

The HW ratio of a normal television set is 4/3 and the screen display is
256 by 192 so that the largest ellipse which can be accommodated has a
radius of 128 and a HW ratio of 0.75 (Figure 4.11). This type of design in
the screen corners could form a nice ‘vignette’ setting for your ‘golden
oldies’.

57

‘Advanced Sound and Graphics for the Dragon Computer

48 FOR R=125 TO
S8 CIRCLE ¢122
58 HEXT R

Figure 4.9 Changing H/W ratio from 0 to 1

Figure 4.10 Changing H/W ratio from1 to 2

58

Chapter 4 Circles

Figure 4.11 Vignette effect

Arcs

So far we have always drawn complete circles, but we can also draw limited
parts (ARCs) of circles (and ellipses). The last two possible parameters
define the start (S) and end (E) of the circle.

CIRCLE (X,Y),R,C,HW,S,E

CIRCLE always draws in a clockwise direction from the three o’clock
position. The 3 o’clock position is defined as 0 and points on the circum-
ference are increasing values between 0 and 1.

If we start at 0.5 and end at 1 the top half of a circle is formed (Figure
4.12).

48 FOR k=16
S8 CIRCLE <12
58 HMEXT R

A start of 0.5 and end of 0.75 gives the top left quadrant (Figure 4.13)
and similarly S =0.75 and E = 1 gives the top right quadrant (Figure 4.14).

S8 CIRCLE (128,250, R.1.1.8.5.8.7
5

59

Advanced Sound and Graphics for the Dragon Computer

Figure 4.12 Semi-circle

Smaller differences between S and E will draw smaller segments and
these can start and end at any point (Figure 4.15). Partial ellipses can also
be drawn in the same way.

Youcan draw anundistorted arc on the screen even if the full circle from
which it comes would be so large that it would overlap the screen, provided
that the centre of the circle is a valid screen point (Figure 4.16).

STEP
F.1.8.75.9.8.2

Chapter 4 Circles

Figure 4.15 Segment

If you want to draw more than one segment of a circle you can change the
start point S with a FOR-NEXT loop and express the end (E) as S plus the
desired width of the segment (Figure 4.17).

45 FOR 5=5 TO 1 STEP .2
59 CIRCLE C128.960.R.1.1,5,5+8.09

The first segment will be drawnfrom 0 to 0.05, the second from 0.2 to
0.25, the third from 0.4 t00.45, thefourthfrom 0.6t0 0.65, the fifth from
0.8 t0 0.85.

61

Advanced Sound and Graphics for the Dragon Computer

Figure 4.17 Five segments

In four-colour modes a similar technique which incorporates the colour
number into the calculation can be used to produce different coloured
segments(Figured4.18). The colour number must be divided down to give a
suitable value.

28

293 GOTO 26

As far as the start and end of thearcsare concerned the innermost loop
givesvaluesof 2/4 =0.5 or 4/4 = 1 and the middle loop steps by 0.2. Pairs
of arcs are drawn by the innermost loop. The first arc is drawn in colour 2
from 0.5 to 0.6 and the second in colour 4 from 1 to 1.1 etc., (Table 4.1).
Note that yellow segments all start from odd numbered points and red
segments from even and that if the value is greater than 1 then the 1 has no
effect.

62

Chapter 4 Circles

Figure 4.18 Coloured segments

Table 4.1

COLOURING SEGMENTS OF CIRCLES

Segment S C/4 S+C/4 S+C/4+0.1
1 wellow &] 3.5 3.5 3.5
2 red [5] 1.8 1.8 1.1
Zowellow 8,2 9.5 9.7 9.3

4 red 1.8 1.2

Douellow 8.4 3.5 9.9 1.9

& red 9.4 1.8 1.4 1.5
Foasllow B.5 8.5 1.1 1.2

2 red B, 1.8 1.6 1.7 etc

Advanced Sound and Graphics for the Dragon Computer

Spirals

Spirals can also be constructed from small arcs if suitable increments in the
diameter are included (Figure 4.19).

A couple of minor changes to the parameters can have major effects on
theresult (Figure 4.20).

S8 CIRCLE o122

5+0.4

Finally a demonstration that judicious juggling with quite simple pro-
grams can have quite startling effects. Look at Figure 4.21 and see how
simply it is built up into a ‘flying saucer’ from a simple ellipse.

1.8:PCLS
5

Chapter 4 Circles

FOR HW=ST TO FI STEP @.1
CIRCLE 122,36 0.R, 1, HW
HEST HM

FI=FI-83.2

HEXT R

CHAPTER 5
DRAWing

DRAW must be one of the most versatile graphics features available in
BASIC, and both its syntax and applications are many and varied. DRAW
(like PLAY) always acts on a string and you may find it a little daunting at
first as there are no less than fifteen different DRAW commands (Table
5.1). However these can be divided up into three main groups according to
whether they cause m« vement, a change in mode, or have other actions.

To be able to see all the DRAW commands in action we must first set up
ahi-resscreen display. (Enterline 20 blindly for the moment and forget it
until later!)

FEEML . & Pl

Although nothing can be seen on the screen an invisible cursor is now
positioned at the screen' centre (coordinates 128,96), and this becomes
apparent if a DRAW command is now added.

=IO
A short line will now appear pointing Up from the centre of the screen,

and if the string is modified to “URDL’’ (Up, Right, Down, Left) a small
square will be formed (Figure 5.1).

ZE DREAWURDL"
Figure 5.1 Square

Notethat each new line isdrawn from the point where thelast lineended,
so that the square is of fset towards the top right of the screen. Semicolons
between these commands are optional, and are usually left out to save

space in the string. If a number follows one of these letters it defines how

67

Advanced Sound and Graphics for the Dragon Computer

Table 5.1

DRAW COMMANDS

MOVEMENT

68

wvertical
u up i) degreeszd
[¥] down {180 dedrees s

horizantal

L left 279 degrees

F right 3260 desrees?
diagonal

E at 45 degreesz

F at 5 degrees

G at 225 degrees

H at 215 degreez
absolute

M draw line to szPecified

coordinates

Bt blank meve (move
to new coordivat
without drawing)

(=33

MODE
A chan9e andie
5 change color
5 change =scale
OTHER
N no ubpdate of lazt draw
coordinates
A execute a substring

Chapter 5 DRAWing

many times that particular command is to be repeated, thus U4 will draw a
line twice as long as U2 and four times as long as U. If we double the U and
D commands in the string we will now produce avertically-elongated rec-
tangle instead of a square (Figure 5.2).

2 DREAWUZEDIL

Figure5.2 Rectangle

]

E,F,G and H work in exactly the same way but give the four possible 45
degree diagonal positions. Any combination of these commands can be
constructed to form any type of design. For example this string draws a
letter A. (Figure 5.3).

ot DRALUSER:

Figure5.3 ‘Drawn’ character

It is not necessary for the string to be actually defined immediately after
the word DRAW as this will also act on existing strings.

2 A= LELa
43 DRAW A%

Scale

Now to reveal the secret of line 20which used the very useful scaling feature
to effectively multiply the whole of the string by a factor. If no scale is
specified then the factoris 1 and U, for example, will draw a line one screen
point long. On the other hand, as we called for a scale of 48 in line 20, U
actually drew a line 48 points long.

69

Advanced Sound and Graphics for the Dragon Computer

As usual points are set in different ways according to the resolution
(PMODE) selected. We have selected PMODE 4 but you should also look
at the effect of using lower resolution two and four-colour modes, and
remember that the system may not distinguish two coordinates as different
points in the lower modes.

Scale can be altered within a program, provided that you remember that
DRAW only acts on strings and not simple variables. To include a simple
variable you must first convert it to a string with the STR$ function. To
demonstrate this run this routine which will produce a series of boxes
which increase in size. (Figure 5.4).

Figure 5.4 Scaled boxes

The maximum value for S is 62 so any further increase in size must be
made by adding numbers after the actual motion commands (remembering
that these are multiplied by S to produce a cumulative effect). All of our
boxesstarted fromthe same point, asthey also ended at the same point, but
if youreplaceline 40 with the string for theletter R disaster will strike. The
first problem is that the drawing does not end at the start position, whilst
the second problem is that the letters reach the top of the screen and
becomedistorted (Figure 5.5). These difficulties can be solved by adding
‘D3’ to the end of the string, so that drawing now ends at the start point,
which also incidentally makes enough room for the larger letters.

Figure5.5 Distortion caused by letter moving up screen each time

N
e,

70

Chapter 5 DRA Wing

The strings which are used for DRAW can be added just like any other
strings so lines 30 and 40 could be combined into one:

HL SN HETRS MUSERZFDEI

Colour

So far we have only used a two colour mode but now let’s change to
PMODES3to see the operation of the colour command C which works in a
similar way to S.

EEM1 . FCLE

eED GOTO

Now eachtime a key is pressed the letter will be redrawn in a different
colour. As colour 1 is the background colour this means that sometimes the
letter is erased. The default colour is the current foreground, and once a
colour is specified in this way it will be used until it is changed again.

Angle

The final command in the mode group is ANGLE which allows you to
change the direction of movement in every following command in 90
degree steps, producing rotation of the design. The steps are defined by the
numbers 0 to 3 where 0 is vertical, 1 is 90 degrees, 2 is 180 degrees and 3 is
270 degrees (Figure 5.6)

Figure 5.6 Angle numbers

n

Advanced Sound and Graphics for the Dragon Computer
The letter will now be drawn in all four possible directions (Figure 5.7).

A point to watch once again is that the defined angle will be used for every
subsequent DRAW command until it is changed.

Figure 5.7 Changing angle

No-update

Normally each new DRAW command starts from the last point drawn but
it is sometimes useful to be able to draw a number of lines from the same
point, so aN (no-update) command is also available. If you put the letter N
before any other command then the ‘cursor’ position will not be changed
during that move. This command is applied to each command in this
routine to produce a star which radiates from a central point (Figure 5.8)

28 DRAL" S42HUNEHRHFHCHGHLHH"
9 GOTO 29

Figure 5.8 Star produced by no-update
X
N

It is also useful in producing branching structures when used selectively
(Figure 5.9)

28 DRAW"RZBHLSR1SHD1OR1BHDS"
Figure 5.9 Selective use of no-update

—T

72

Chapter 5 DRAWing

Move and Blank Move

In addition to the movement commands discussed so far we also have M
(move)and BM (blank move) which are rather different in that they specify
actual new coordinates rather than just direction and distance. The only
difference between M and BM is that M draws aline to the new coordinates
but BM just moves the cursor there without drawing. Until now we have
been content to start all our drawing from the default screen centre posi-
tion, but this can easily be altered by adding BM x,y to the front of our
string. The coordinates x and y may be defined in either absolute or relative
terms. If numbers alone are included they are taken to be absolute. Thus
BM20,20 will move the drawing to the top left of the screen (Figure 5.10)

25 _DRAW"EM2E. 26R25H01 TR 15HD 10R 16
HOS"

Figure 5.10 Blank move to 20,20

— T

To indicate a relative move you must put a + or — before the number,
when the calculation will be made relative to the current position. Now
BM + 20, + 20 will move the drawing towards the bottom right of the
screen from the centre (Figure 5.11). The rule to remember is that up and
left are always negative.

73

Advanced Sound and Graphics for the Dragon Computer

1R ENE L R

Figure 5.11 Relative blank move to +20, +20

~T

The move command M itself is mainly used to draw relatively long lines
to predefined points (rather like LINE). It is possible to put variables in the
M and BM commands, although it is a little messy as each variable must be
converted independently to a string and these must be separated by a
comma. Variable X and Y coordinates are entered hereto form a series of

lines of differing length (Figure 5.12).

=58

FOR M=8 TO 250 STEF 19
DRAW "HI"+STR
=4z

= WU B s D
AN AR A

N
N

Chapter5 DRAWing

Figure 5.12

Execute substring

The final command is X which calls a substring which has already been
defined elsewhere.The syntax is:

XAS;

and it is important to note that this is the one place where the semicolon is
not optional (even when it is at the end of a line)! The main value of this
command is in complex programs where particular sequences of DRAW
commands are to be used frequently. As a simple demonstration we will
form a short ladder section as A$ and then build up longer sections by
adding strings (but remember the final string length cannot be greater than
255). Each string is then executed to give ladders of varying length, with D$
being executed twice to give the longest ladder (Figure 5.13)

HE="1J1805
Ef=H%+H%
G
La D%

DR Ef
DRAW'EM 116
3 URAMEMIES

75

Advanced Sound and Graphics for the Dragon Computer

Figure 5.13

]

76

1]

]
|

LT

CHAPTER 6
Combining the Graphics Commands

A particular design may be built up by a combination of any or all of the
graphics drawing commands described so far and to give a final demon-
stration of how to do this we have enlisted the help of our friend the PIC-
MAN (Figure 6.1). Perhaps we should explain that he is quite unlike his
abbreviated relative PI-MAN in that he is definitely not an automaton and
certainly has no political aspirations (hence his appearance in glorious
black and white), and that unlike PAC-MAN he has no fear of ghosts or an
insatiable appetite for power pills. Instead he has deliberately been con-
structed from a wide assortment of graphics commands so that he demon-
strates how you can combine most of the hi-resolutiondrawing commands
in a single program.

Figure 6.1 PIC-MAN

&

PIC=[RAN

Wesstart by setting the PMODE to 4 so that we have the highest possible
resolution and can therefore add lots of fine detail. SCREEN 1,0 gives us
white on a black background.

19 PMODE 4.1:

‘REEM 1.9:PCLS

In its simplest form the CIRCLE command only needs two parameters:
the Xand Y screen coordinatesof the centre, and the diameter of the circle,
so that will do nicely fora pair of small round eyes (Figure 6.2). Remember
that coordinates are always specified on a 256 x 192 grid, no matter which
PMODE you are using. When planning a design you can use graph paper

77

Advanced Sound and Graphics for the Dragon Computer

or fancy plotting sheets, but a trial and error approach on the screen is
often quicker where there is a lot of fine detail to squeeze in. There is no
need to specify anything else as the default values will give you a full circle
in the foreground colour.

43 CIRCLE
S CIRCLE

Figure 6.2 Eyes
*e

Heads are not actually round but rather egg-shaped (especially if you are
a micro-maniac) so for that we need to form a vertically-distorted ellipse
with CIRCLE. It is the height/width (HW) ratio which allows you to
include this distortion but note that this must be the FOURTH parameter.
It is very easy to forget that the system can only tell that this is the fourth
item if it can see three other parameters before this, and that therefore you
must now also include the third parameter (colour). Although we have
actually put the number I in to set the colour to white thecomputer will also
recognise a comma on its own as the default value, so either of the follow-
ing lines has the same effect. In this program we have deliberately included
all the actual values to make it easier to read. The HW ratiois greater than 1
so that distortion is vertical rather than horizontal (Figure 6.3)

313:8,1,1.5

0

Figure 6.3 Head

A further feature of CIRCLE is the ability to form only certain arcs of
the whole circle, using parameters five and six to set the start and finish.
PIC-MAN is smiling so his mouth is the bottom half of a circle which is
only drawn from 0 (3 o’clock) to 0.5 (9 o’clock) (Figure 6.4).

CIRCLEY

S1.8,.5

Chapter 6 Combining the Graphics Commands

&

The simplest sort of LINE just goes from one point to another, as in the
nose, and PSET rather than PRESET means that white (the foreground
colour) is used (Figure 6.5).

Figure 6.4 Mouth

28 LIHEC 22, 52 0-022, 54 1, PSET

Figure 6.5 Nose

Lrd
w

Although his ears may look positively princelythey arerathertoo small
to form with CIRCLE so are simply boxes formed by specifying the top left
and bottom right corners and adding B to the end of the LINE command.
The neck is made the same way (Figure 6.6).

L PSET.E
SET.E

Figure 6.6 Ears and neck

@

Now that we have a neck we can add the round-shouldered look by a
combination of all the previous CIRCLE ideas to give the top half of a
horizontally-distorted ellipse (Figure 6.7)

=

118 CIRCLEN 22,720 1201005, .51

Figure 6.7 Shoulders

79

Advanced Sound and Graphics for the Dragon Computer

We could have continued to use LINE to draw the rest of his body but
DRAW is more versatile as a wholeseries of lines in different directionscan
beDRAWn atthesametime. First wemake the top half of thebody (Figure
6.8).

TReEUZ4RI0E

Figure 6.8 Armsand trunk

and then the bottom (Figure 6.9).

138 DRAW'BIM7Z, 37DZOR2UZORI0:
24"

Figure 6.9 Legs

$

Note the use of blank moves (BM) to set the starting position, and make
sure you follow the instructions round tosee which way they go. Itisbestto
try to plan your route carefully so that it is as compact as possible. You
mustalsoalways remember that thenext DRAW command will normally
start from the last point DRAWn, even if that was done an hour or more
ago (aslong as youdon’t use RUN). Soif things start going haywire in your
programs look back and check what was the last thing DRAWn!

80

Chapter 6 Combining the Graphics Commands

DRAW can be used to make any sort of design and another place where
it is very useful is in putting text on the high resolutionscreen. The letters
forming the title PIC-MAN are DRAWn in this way. (For more details of
this technique see later) (Figure 6.10).

PIC-MAN obviously favours Doc Marten’s as his boots are quite
massive top halves of CIRCLEs with thick soles formed by boxes FILLED
with the foreground colour (Figure 6.11).

Figure 6.11 Boots

hoij

PIC-MAN

81

Advanced Sound and Graphics for the Dragon Computer

To make him look more solid we have PAINTed in his trousers (Figure
6.12). PAINT will fill an area with the first specified colour until it reaches
the second specified colour and the main user difficulties are making sure
you set the right coordinates and that there are no holes through which
PAINT can leak. Try altering the coordinates in line 180 and watch what
happens.

128 PAINTCT4,10880 1.1

Figure 6.12 Painted trousers

®

PIC-MAMN

DRAW always acts on a string but this string can also be defined in
advance as a substring and used repeatedly by means of the X command.
As we have two identical hands to DRAW these have first been defined as
HS. HS also uses the useful no-update or N parameter. Normally each new
DRAW commandcontinues from where the last line DRAWn ended, but
if you put N in front of a command thenthenext line is DRAWn from the
sameplace as the current one. Follow the sequence carefully to see how
each finger is formed (his thumbs are out of sight in case you think he is
deformed).

138 H$="MDSRZHLSRZHDSRZHDS"

To put the hands into the appropriate positions we just need to set the
new screen start position and then execute H$ by sandwiching it between
‘X’ and ¢;’ (Figure 6.13).

288 DRAW"EME4, 108 HE . "
218 DRAW"BM34. 19@:HS: "
We are afraid that PIC-MAN is really rather pompous and has taken to

wearing the bow-tie defined in A$. Notice that this is DRAWn from the
centre using some of the diagonal commands (F and G) and that it is delib-

82

Chapter 6 Combining the Graphics Commands

erately asymmetrical. A relative blank move is used to separate the final
short stripe from the rest of the picture (Figure 6.14). This has the
advantage that you do not have to calculate the actual position, but only
thedisplacement from the current position as + and — anumber of screen
points. 1t is not usually essential to start DRAWing a design from the
centre but in this case PIC-MAN wants to prove to you that this is actually
arevolving bow-tie, which grows, so he needs a central point to work from!

HE= B2,

Figure 6.13 Hands

PIC-IMARM

Figure 6.14 Complete

&)

[

2

£

PIC~FHN

The scale parameter S sets the size of the string DRAWn, the angle
parameter A allows you to change the direction of DRA Wing by 90 degree
steps, and the colour parameter C allows you to change the colour of
DRAWing. You can use a variable to change any of these provided that
you first convert the variable to a string with STRS. All these ideas have
been combined together in this little sequence in which the tieis DRAWn in
colour 1 and then colour 0 (ie drawn and erased), in all possible directions,

83

Advanced Sound and Graphics for the Dragon Computer

and at ten different increasing scales. The sound is included to slow things
down so that the movement can be clearly seen (Figure 6.15)

238 DRAW"S"+STRHCS)

248 FOR M=B TO 3:DRAW"A"+STRSH)
258 FOR M=1 TO B STEP-1:DRAW'C"+
STRSC M)+A%

268 S0UHD2Z25S, 1 HEXT 1M

7H S=5+1:IF 5418 THEM 229

a

Figure 6.15 Tierevolving

PIC-MAN

Of course pride always comes before a fall and that rotating tie looks
very dangerous, so it is hardly surprising that it eventually explodes.
Explosions are very frequent features of computer programs so this is a
very general routine. A series of expanding concentric CIRCLEsaredrawn
by using the variable X to set the diameter, and a sound is integrated wth
each expansion of the circle (Figure 6.16). PLAY is used instead of
SOUND as it allows the use of a much shorter duration if tempo (T) and
note-length (L) are set to their highest value (255).

Once it has passed its peak the explosion dies away as the CIRCLEs are
nowdrawninreverseorder by STEP-1, sothat only PIC-MAN’s boots and
afew fragments remain (Figure 6.17). Notice that integration of graphics
and sound is more complete here as X also varies the volume and tempo of
the PLAY command.

233 FOR »=53 To 1 STEP-1

82 595, 4,8 PLAY"L255Y " +5T
2T STRSC kg o4+ "D ¢

84

Chapter 6 Combining the Graphics Commands

Figure 6.16 Explosion

PIC-MAN

Figure 6.17 Remains

PIC=MAN

F=¥=1

85

CHAPTER 7
On-Screen Movement

Some type of on-screen movement is a very common requirement in
graphics programs, but it can take many different forms. The simplest type
of movement deals only with a single point which is moved from one posi-
tion to another.

Text screen

The PRINT positions on the text screen are mapped as 16 lines of 32 cha-
racters numbered sequentially from 0 to 511, and this is taken account of in
this routine which will move a black block (CHR$(128)) in any of four
directions.

gt THEN 6

THEHM F=F

1 -1

Note that the ASCII codes for both normal and shifted cursor characters
are tested for, and that the limit checks in line 110 prevent you crashing if
you try to leave the screen. The last screen position (511) is riot used as
PRINTing here causes automatic screen scroll.

As the routine returns to the CLS in line 30each time, the character in the
old print position is automatically erased. If you want to be more selective
and only erase the character in the last position you need to store the old
position as a new variable (LP) and then reset this point as you move witha
PRINT @LP,BS. A$ and BS$ can be set to any of the alphanumeric or

87

Advanced Sound and Graphies for the Dragon Computer

graphic characters. In the example below (CHR$(143)) is used to reset the
old point to green.

19 CLS:P=248:LP=P

20 R%=CHRS 1230 BS=CHRS 14
PRINT & LP.E$

LP=P

Non-destructive movement

In more complex programs you may wish to move without permanently
altering the screen and you must then keep a record of what lies in the new
print position. You can PEEK into the new position but unfortunately the
PEEK values are not always the same as the ASCII codes. You must
therefore either use a sorting routine to calculate the appropriate ASCII
codeor store the PEEK value as a simple variable and then POKE this back
instead of PRINTing a string. (The text screen starts at location 1024, so
that POKE(1024+ X)isthesame as PRINT @ X). So thatonly one varia
bleisneeded you must reset the old position before you PEEK thenewone.
Note that line 30 must now be deleted and that a message has been added to
line 10so that you seethereplacement of the display working. PE must also
be initially set to the value PEEKed in the start position.

148 PE=PEEK(1H244F
158 GOTO 49

Text cursor

Where this type of routine is used to move a cursor over text it is usual to
invert the screen display of the character at the cursor position, so that the
character is still visible. As the ASCII codes for lower case (inverse video)
characters are all 32 greater than those for the appropriate upper case
(normal) characters we only need to add 32 to the PEEKed value.

48 PRINT & P, CHR'$: PE+!
Graphics

Essentially similar routines can be used to deal with individual pixels in
both low and high-resolution graphics. In both cases calculating the moves
is even simpler as the screen is mapped here as X and Y coordinates. In low-
res the screen is 64 (0—63) by 32(0—31), SET will turn a pixel to any colour
(C1) and RESET will revert to the background colour (black).

88

Chapter 7 On-Screen Movement

[l

:

W IF I$="" THEM £8 EL
(I
IF I—P OF: 1“1 THEN

[N <
ma & &

2 THEH ¥1=
128 IF (l/U THEN W1=8 ELSE IF ¥1
221 THEM ‘1=21
156 G0TO BB

The hi-res equivalents PSET and PRESET operatein the same way as
SET and RESET but on a 256 by 192 grid.

EEN 1,8:PCLS H1=

THEH ¥1=8 ELSE IF X1
“1=54
148 THEHW *1=8 ELSE IF *1
2132 THEH W1=322
158 GOTO 28

Unfortunately, although POINT can be used to test the colour of an
individual low-resolution pixel, this value cannot be incorporated into a
SET command, so that the original display can be recreated after
movement, as 0 (black) is not a valid colour. On the other hand the high-
resolution equivalent PPOINT value will be a colour which can be used in
PSET to recreate the previous state of the cursor point.

2 PPUIHTf>1.Y1>
158 GOTO 48

The cursor will now move non-destructively over the screen, even if the
background colour changes. This can be checked by changing the PCLS in

89

Advanced Sound and Graphics for the Dragon Computer

line 10 to a different colour or, more dramatically, by adding this line to
give a coloured design to move over.

The only problem now is that the red cursor is invisible when it ison a red
background. This can be solved by a check that the cursor colour (C1) is
different to the background colour (C2), followed by a change of cursor
colour if appropriate.

144 -
HEH 3
ELZE I

Flashing cursor

On a complex screen it may be difficult to see the cursor, so this is often
turned on and off to give a flashing ef fect. This is simply achieved by modi-
fying the key-check line so that if no key is pressed the cursor is erased and
then redrawn. For example:

‘% IF I%="" THEM FRE:E
OTO 43 ELSE I=RSCCI$D

The rate of flashing can be slowed by inserting a timing loop.
Jdi="" THEM
TO 18 HEAT
IF 9

1.1 FoR T
T 48 ELSE I-

Controlling movement

1f you want to travel faster you can move more than one pixel at each
decision (increment X1 and Y1 by more than 1), although this may or may
not give less precise control. Remember that in PMODE 4 each coordinate
refers to a single screen point, but in lower PMODE:s points are set in
groups so that PSETting more than one coordinate can have the same
effect. For example in PMODE 0 you must increment both X1 and Y1 in
steps of at least 2, and in PMODE 3 you should increment X1 in steps twice
the size of those used for Y1.

Using INKEYS$ for continuous movement can be tedious, as the ROM
keyboard debounce routine requires you repeatedly to lift your finger and
release the key. However this problem can be got around easily by using
this subroutine where you would normally use INKEYS$. 1t waits for a key
to be pressed and then autorepeats until the key is released. PEEK(135)
givesthe ASC11 code for the key pressed.

90

Chapter 7 On-Screen Movement

S50+l GOTO £

Where joysticks are used to directly control screen position appropriate
scaling of the JOYSTK values is required. For example in low-res the
JOYSTK(1) value for the Y coordinate must be halved to give 0—31.

Ao |
On the other hand in PMODE 4 JOYSTK(0) must be multiplied by 4 (to
give 0-255) and JOYSTK(1) by 3 to give (0—191).

i

Faddd L=

Although this scaling for hi-res gives numbers in the appropriate ranges
you must remember that not all the individual points can now be reached,
as movement is being made in steps of 4 and 3.

It is also possible to use a joystick to control direction of movement
rather than absolute position and in this case all points are easily reached.
The actual joystick values are read into temporary variables JO and J1
which are used to determine direction.

V1= 141

Whenthelever is central both JO and J1 will equal 32, so upper and lower
limits of 20 and 50 have been arbitrarily chosen, but the sensitivity
(distance lever must be moved before an effect is produced) can be altered
by varing theselimit values. Values close to 32 give most rapid response but
it can then bedifficult to prevent unwanted movement. As X and Y coordi-
nates are considered separately diagonal movements can be produced. If a
wait status is needed a check for a central position on both axes can be
included.

Joystick position can also be used tocontrolrate of movement if the size
of step is linked to thedistance of the lever from the central position. In this
routine three different size steps are provided (1, 2 and 5 units). The most
extreme positions must always be checked for first.

91

Advanced Sound and Graphics for the Dragon Computer

1928 IF Jo<18 THE
IF 315 THEM

428 THEH #1 ELSE IF Jo
THEH ‘1—(.1+.. SE IF .Jaoe THEN
“1+42 ELSE IF .Jo-43 THEMW

+1

Moving more than one point

So far we have only looked at the simplest situation where a single point is
being moved, but often we need to move a series of linked points which
make up a particular design. We will consider the position for low-
resolution first.

Direct setting of points

The simplest way to form your chosen design is to SET the required colour
at each desired screen point, which is defined as X and Y coordinates.
Unless the number of points to be SET is very small these coordinates are
normally stored in DATA statements. This DATA can then be READ and
the corresponding points set.

RN
@ o

= Q0 = i
=

Note that the screen must be cleared to black (CLSO0) and if the DATA is
to be used more than once a RESTORE must be added to the end of line 50.

DL

Ty =

The display will now flash as the points will be SET and the screen
cleared 100 times.

92

Chapter 7 On-Screen Movement

Reading into arrays
A modification of this approach is to READ the DATA into X and Y

ARRAYS and then use the array el in the SET cc
1 GUSUE 9o

S0 FOR N=1 TO 16:SETCMIND, Y(H L, C
13:NEXT N

90 DIM X(163,Y(162
188 FOR N=1 TO 1€:RERD ZCNJ,YIND
+MEXT N:RETURN

At first sight this seems rather complicated, but this method has two
mainadvantages. Thefirstgainis a small decrease inthetime takento plot
the design on the screen. This can be demonstrated by timing a 100 loop
cycle.

10 TIMER=0
78 PRINT TIMER~-59

Comparative timer values are 17.8 seconds for direct READing and 16.8
seconds using the array method.

One problem with DATA statements is that they can only be read
sequentially and the second, more important, advantage of transferring
the values to an array is that any part of the design can easily be used
independently. This procedure is dealt with in more detail later, tut the
general idea can be seen by adding aSTEP 2in line 50 so that only alternate
points are SET.

5@ FOR N=1 TO 1€ STEP 2:SET(X(NJ
SYOND, CL O NEXT N

The ‘characters’ approach

As you should remember from the earlier explanation of low-res graphics,
there are restrictions on the way points can be SET to different colours and
any pattern of set points can also be represented by certain of the Dragon
graphics characters. Although using this method requires some careful
planning with a jigsaw approach on squared paper to determine the appro-
priate characters it has a number of plus points. Each graphics character is
equivalent to four pixels so that the number of values to be entered is
divided by 4. The graphics characters can be PRINTed, so that there is no
need for a long, complicated, and often error-prone, DATA statement.
‘Impossible’ combinations of points will be obvious and there is also a
large increase in speed of plotting. The simplest action is to put the cha-
racters directly into the PRINT command.

93

Advanced Sound and Graphics for the Dragon Computer

S8 FO
143

FEIMT @ 3&#M. CHR
HET H

This new line 50 produces the same display as the old line, by means of a
loop which PRINTS two characters on adjacent lines. However it is much
quicker (5.1 seconds) — only about 30% of the time taken to SET each
point individually.

The speed can be increased even more if the design is stored as a string
variable.

1 A$=CHR!S
S FORF
HEAT H

rHIHES 142
1:PRIMT W

M. Frdis

This minor change has profound effects (3.2 secs) as the time drops to
only 18% of the original. If you double the number of points to be SET you
will virtually double the time taken (34.1 seconds for direct READing or
30.2 seconds from an array). On the other hand increasing the length of A$
to 10 or even 20 characters has much less effect (3.7 seconds and 4.2
seconds, respectively).

Where movement of the design is required rapid replotting is usually
necessary, and the logic of the ‘characters’ rather than the ‘SET” approach
should now be obvious! If you require even more speed you can POKE
&HFFD7,0 (if your machine can stand this) which will reduce all times by a
further 25%.

Referenced movement

The easiest way to define the screen position of the design is by means of
of fsets from the start position. For X and Y mapping we will call these XO
(for X axis offset)and YO (for Y axis of fset). To determine the new coordi-
nates we simply add or subtract XO and YO from the current position as
described earlier in the general movement section, and then add these of f-
sets to the SETting line.

S8 FOR M=1 TO 1&
HV0LCL 0 HERT M

Where graphics characters are used we are back to the sequential 0—511
arrangement so we must allow for steps of 32 on the Y axis, either in the
key-check line or in the PRINT @ line.

94

Chapter 7 On-Screen Movement
Modifying limits

‘Where more than one screen position is to be set at the same time we must
modify our limits to ensure that there is room for the whole of the pattern.
If we use the top left-hand corner of our area as the reference point we will
need to subtract the width of the design from the X axis limit and the depth
fromthe Y axis limit. For example a 4 pixel by 4 pixel design on the low-res
screen cannot be moved beyond X,Y coordinates of (63—4),(31-4). If you
look back to the cursor routine you will see that as a general procedure the
size could be defined as XS and YS and then these values subtracted from

the absolute limits.

“1

25
ELSE IF /1
1-7S

Starship

Let’s put all these principles of moving a low-res design together in a pro-
gram which moves a more complicated picture of a starship (Figure 7.1)
around the screen, instead of an anonymous box.

Figure 7.1 Starship

The first idea is to map out the design on the low-res grid, put all the pixel
X and Y coordinates into DATA statements, read these into arrays, and
index the SET coordinates to cursor key movement. The transfer of DATA
tothe arrays is put in a subroutine atthe end of the program out of the way.
On return from this initialisation process all the points are SET by line 30
and the program waits for a key press. The cursor keyroutine used here
PEEKSs at certain reserved memorylocations to detect which key is pressed
and has the advantage over INKEY$ of autorepeating.

As soon as a key is pressed (PEEK(337)< 255) each point is RESET in
turn in line 50. Note that this must be done BEFORE the screen position is
updated.

95

Advanced Sound and Graphics for the Dragon Computer

When specifying limits you must not forget to allow for the actual width
and height of the picture. If you check the DATA the lowest X co-ordinate
is 5 and the highest 29, and similarly the limits of the Y coordinates are 1
and 6. The overall size of the picture is therefore 25 by 6 pixels. The design
is SET from the top left point which starts at (5,1), rather than the more
obvious start coordinates of 0,0, so the right-hand X limit must be (X axis
length (64) — picture width (25) — original distance fromleft (5)) = 34, the
bottom Y limit (Y axis length (32) — picture height (6) — original distance
fromtop (1)) =25, and the left-hand X and upper Y limits are (0 — original
distance from left (5)) = —5 and (0 — original distance from top (1)) =
— 1, respectively.

13 GOSUE 1098
e I T
FOR HM=1 TO S5:SETC WM a+H0, 0 H
T H

THEH 0+1
ELZE IF =0

When you RUN this routine you will find it functions but that it is very
slow, taking about 1.2 seconds for each position update. It looks as if this

96

Chapter 7 On-Screen Movement

starship is just drifting in space as it takes more than 45 seconds to cross the
screen. Obviously something must be done to speed things up, so why not
replace all that RESETting of the SET points in line 50 by a simple CLSO0.
Not surprisingly that effectively halves the time per update to 0.6 seconds
as only half the work is left. Although CLSO will delete any text you have
on the screen remember that both CLS and PRINT are almost instan-
taneous, so that it is quicker to wipe the wholescreenand PRINT back any
text youneedrather than use RESET.

As this stands the screen is cleared before all the key checks and calcu-
lations, but there would be less flicker if we deleted line 50 and jumped
back tothe CLSOin line 20so that the original display was maintaineduntil
the new one was about to be plotted.

126 GO0TO 289

To try to speed things up even further we could use PRINT CHR$
instead of SET. A copy of the starship design transferred tothe PRINT @
grid is shown in Figure 7.2. The individual PRINT @ positions and cha-
racter codes could be treated as DATA and put into arrays just as for the
SET coordinates, and then these printed from the array elements with an
offset. Make sure you include a semi-colon after the PRINT!

28 FOR M=1 TO
SCHESECYOM D b s HEET b
1818 FIJF H=1 TI.J
+:MHE 'T

Y

(:.»-.

U_;, 14L1, 185, 14[1 167, 1_,.-,

Figure 7.2 Starship formed with characters

97

‘Advanced Sound and Graphics for the Dragon Computer

Although this doubles the speed again (0.3 seconds) it still only looks like
impulse drive as a lot of time is spent recovering the array values during
each update. If you think the speed of movement is more than doubled
remember that each move now takes you twice as far (one character is two
pixelshigh and two pixels wide). For really high speed warp drive operation
we are going to have to get rid of those arrays and print strings directly.

The design is four character units high so we need four strings (A$—-D$).
These are defined in lines 1000—1030, and printed in the correct position
relative to each other by appropriate numbers for the start position in the
PRINT @ commands (0, 35, 66, 98). Notice that B$ has three black cha-
racters (128) included as this is simpler than splitting this string into two.

FRIMT @
C%/ FRINT @

B FRIMT @ o+F0, A%
0. E%; FRINT @ S5+F0
P O

&1
1843 RETURH

You will find that the update time is now reduced very dramatically to
0.04 seconds, that is 30 times faster than our original program. The cursor
key routine could be altered so that there is only one offset (PO) and this
must then be changed by steps of 32 for vertical movement. If you fit the
ship in the bottom right-hand corner of the screen you will see that the
limiting PRINT @ position is 403.

IF FEEEX

222 THEW FO=FO+1
FO=5 ELZE IF FO

GOTO 28

The only problem remaining now is that the ship wraps round if it
reaches the edge of the screen, because the PRINT @ positions are mapped

98

Chapter 7 On-Screen Movement

sequentially rather than as X,Y coordinates. To solve that we need to
analyse the cursor movements in terms of line (L) and row (R) rather than
simply PRINT @ position, and calculate PO as (L*32) +R. There is no
need to leave the check for absolute PRINT position as a value above 403
cannotnow be reached asR wouldbegreaterthan 19and L greaterthan 11.

&3 IF FEE THEH L=L-1
V8 IF FEEENZ 2 THEH L=L+1
VI OIF L=w THEN L=0 ELZE IF L:l
1 THEH L=
=8 IF FEEF

23 IF FE .
9% IF R<8 THEH
3 THEH R=13

193 PO L
119 GOTO 33

An easier way to deal with CHR$

As an example of a ‘consequences’ routine in Dragon Games Master we
gave a design for a Dragon which used a lot of low-res graphics characters
(Figure 7.3) but required that you typed in the following lines to form the
figure.

u

FRIMT @ 295, CHRES (STRIM

Advanced Sound and Graphics for the Dragon Computer

HEN = L1
[T [1] [1] [1T1]
Asyoucan seethat wasa bit tedious, very vulnerable to typing mistakes,
and rather difficult to edit, so we put our minds to finding an easier way of
dealing with long strings of characters.
If you look through the lines above you will see that a total of only 14
different characters are used, so we could store their codes as DATA and
then READ those numbers into an array.

38 FOR CH=1 TO 14 F‘,EH['
T CH

Each element in the array describes one of the characters (Figure 7.4),
and we can now describe each line of the figure by a string of numbers
instead of having to repeatedly type CHRS(. . .), provided that we have a
decoding routine which can convert our number pattern into CHRS. For
example the first line would now be:

100

Chapter 7 On-Screen Movement

c =
559 5

x4}

Figure 7.4 Character representation in array

CHRE [241]243[159][242]128] o
ARRRY 1 2 3 4 S

As we have numbers greater than 9 we must enter the low numbers with a
leading space so that we can always slice the string into blocks of two (lines
1000—-1010) (Figure 7.5) and then take the VAL of the resulting string
(BS$), thus converting it into an actual number. Line 1030 thenlooks in the
array A and prints the character corresponding to the number in the array
element with that subscript. When all of the string has been decoded the
PRINT position is moved to the next line and a RETURN made.

FRIMT CHRECALE 30
HEAT I
FRIMT:RETURN

[12:_

o
o
i8]
+
1]
L]
3]
o
o

Lines 120—180 describe the rest of the figure and if you RUN this you
will see the Dragon created, but rather slowly (3.7 seconds). Line 300 calls a
subroutine which halts the program until a key is pressed (1070). To make
life simpler at a later stage all the numbers in each A$ start from the same
screen row, even where this means leading blanks must be inserted.

101

Advanced Sound and Graphics for the Dragon Computer

GOSUE 1678
1678 IF FE Y255 THEM 1875
ELSE RETLRH

If you make a mistake in entering each line it is much simpler to correct,
but that sort of speed of operation is not much use. The next stage is to
makeanotherarray(L$)to hold animage of each line of the design once it
is formed. Each new character is added onto the end of L$(n) (line 1040),
and L is incremented to move to the next element of L$ to store each new
line.

sDIM A 14 0D IM L

B L =L g0 L a+CHR S HOE 3)
L=L+1:PRIHT: Bg="" RETLKH
We can now recreate the figure from the L$ array very simply and much

quicker than before. A check reveals that it now takes0.08 seconds which is
only 2% of the earlier figure!

TOPRINT L$0L Y HEX

If weuseaPRINT @ command related tothelinenumber (P*32), rather
than just aPRINT, we can follow our string with a semi-colon and preserve
the black screen. (This was why we made sure we started all the lines in the
same screen row).

Chapter 7 On-Screen Movement

As it stands we are PRINTing the figure in the top-left corner but we
could easily offset this, by adding another variable (PO). A value of 200
sets the figure in the bottom right of the screen.

F=3 TO 7:FRINT RCP¥
PRIMT CHRSC 12 2
1878

The next logical development is togetthe figure moving, and this can be
done by simply arranging to change the offset. The change must be
negative as Dragons never go backwards.

S4@ PO=PD-1:GOSUB 1876 G070 528

Our Dragon will now wend his way up the screen, wrapping round at the
edges, until he eventually crashes with an FC ERROR when the PRINT
position goes negative. To prevent him moving upwards we could loop the
offset from 31 to 0, although he will still wrap round so we now need to
CLSO0 at the end of each cycle, whichcauses the display to flash.

1 7O 8 STEP-1
TO 7:PRIMT @
PRIMT CHRS:
FO

Horizontal screen scrolling

It is possible to produce a smooth display which scrolls without wrapping
round if we add some black sections (STRINGS$(30,128)) either side of our
Dragon pieces, and only show an incrementing MID$ section of the total
string at a time.

T S4-FOR L=B TO 7:F
MIDS: LS L 0P, 2830
i - ME¥,

RIMT C
T4E GOTO

103

Advanced Sound and Graphics for the Dragon Computer

Not only does the Dragon move smoothly on and off the screen, but he
never reappears before he has disappeared completely. If you want to be
really clever you can make sections of the screen scroll in opposite
directions at the same time by making another string and modifying the
way the string is sliced, although that inevitably has a time penalty.

ven A+UFOLLOW T
HE [JF‘ ISIJN"+‘:TF‘IHI45l 18,12

720 FOR F‘ 4 FOR L=0 TO 7:
RINT (L3 I["$(L$(L'

i PRINT I’HF‘$'
O, B5-P, 3
JES~PL 280

Of course this type of horizontal scrolling could be used to produce any
type of design, and is particularly appropriate for large-scale displays and
advertisements.

CHAPTER 8
Copying the Screen

Now that we have dealt with the commands which allow you to create
graphics on the screen and looked at how we can move these around, let us
consider some other features which all involve making copies of the screen.

PCOPY

The hi-resolution command PCOPY enables you to make instantaneous
copies of whole graphics pages, one at a time. All you need to do is to spe-
cify the source (from) and target (to) pages. For example:

PCOPY 1 TO2

will make a copy of graphics page 1 on graphics page 2. Remember that as
this command produces a COPY the source page still has its original con-
tents so that you can keep copying the same thing.

InPMODEDO only one graphics page is used for the whole screen display,
so PCOPY canchange the entire screen at one time. In the following exam-
ple page 1 s first displayed and cleared to black. When akey is pressed page
2 is displayed and cleared to black. When a key is pressed page 2 is
displayed and cleared to green. When a key is pressed again page 1 is copied
to page 2 (the page currently being displayed) so that it changed to black.

SCREEM 1.8 FCLS1

16133

A I$=IMEEVS IF I$="" THEH 1G4
U ELSE RETURH

Of course you could get the same effect as this example with a simple
PCLS but once you have some actual graphics on the pages the command
becomes more useful, particularly in producing animation. As eight
graphic pages are available, and PMODE 0 uses only one at a time, we

105

Advanced Sound and Graphics for the Dragon Computer

could produce seven different alternative screens containing varying sized
circles on pages 2 to 8 (Figure 8.1) and PCOPY them back to the page on
display (1) in rotation.

FOR TO 3
FHMODE @, H:PCLE

29 MEWT M
169 GOTO 28

Figure 8.1

Chapter 8 Copying the Screen

107

Advanced Sound and Graphics for the Dragon Computer

108

Chapter 8 Copying the Screen

Advanced Sound and Graphics for the Dragon Computer

Notice that there is an initial delay while the program first draws the
series of circles on pages 2 to 8. These circles are not seen until they are
PCOPYed back to page 1 as the only SCREEN command follows PMODE
0,1. The very rapidly changing display almost appears to show all of the
circles on screen at the same time and looks rather like a whirlpool.

(A similar effect to PCOPY can also be produced by changing the page
in the PMODE command followed each time by SCREEN to change the
page currently on display.

In higher PMODEs more pages are needed for each screen so each
PCOPY command will only copy part of the screen. This means that you
must use more than one PCOPY command to change the whole screen,
and that a smaller number of different pictures can.be stored. If you
modify the program to use PMODE 1 you will see that the number of alter-
native ‘frames’ is reduced from seven to three. On the other hand four
colours are available, and the circles can now be drawn in three different
colours.

110

Chapter 8 Copying the Screen

FCLEAR 2 PMODE 1.1:PC
FOR 3 TO TEFR 2

2

19y GOTO 28
1f you find it difficult to notice that thecirclesaredifferent colours you
can add a timing loop which will slow things down if you press a key.

IF 143" THEM FOR:
HEXT T

WS OI¥
T=1 TO 1

It is not necesary to copy the whole screen at the same time and if you
remove the second PCOPY in line 80 only the top half of the screen will
change to produce a cycle of semicircles.

20 PCOPY W TO 1

To make this more obvious change the original PCLS on pages I and 2to
PCLS3.

19 FCLEAE S:FMODE 1.1 PLC

When you set up pictures in one mode and then view themin another, or
only copy part of thescreen, things can get rather confusing. If youchange
line 60 to PMODE 3 you may find it difficult to explain the resulting pic-
ture (Figure 8.2)!

BB FMODE 2

FEEH 1.8

At the top you have a series of flashing coloured half-ellipses, below this
ablue band, and in the bottom half of the screen a constant yellow ellipse.
All of this is actually quite logical if you think about it step by step.
PMODE 3 uses four pages and since we started from page 1 we can see
pages 1 to 4. The blue band is page 2, which was the bottom half of the first
two pages which were turned blue by PCLS3 inline 10. The yellow ellipse at
the bottom was drawn on pages 3 and 4in PMODE I, and this ellipse, and
those on pages 5 to 8, are being copied back onto page 1 in the top quarter
of the screen. The circles have been distorted to ellipses as each page is
shortened to half of its height in PMODE I. Copying only part of the
screen can be'used to produce a ‘window’ effect where only certain sections
of the screen are changed.

111

Advanced Sound and Graphics for the Dragon Computer

Figure 8.2 View in PMODE 3

In conclusion the main things to remember about PCOPY are thatitis
very fast but that it can only change whole pages at a time.

GETting and PUTting

GET and PUT are an extremely valuable complementary pair of
commands which allow you to store individual areas of the display and
then recreate them anywhere on the screen. This is obviously a great asset
when you want to move complex designs. However they are not found in
most versions of BASIC and are often avoided by the novice, as they
appear complex at first sight and their value and operation are not
explained clearly in the Dragon manual.

GET takes an area of the screen display, and stores the status of every
pixel inthat area. PUT can then recreate this area anywhere on the screen.
The process is rather like creating a photocopy of the GET area and PUT-
ting it down in different places (note that the original is not af fected by the
copying process). The size of the area copied by GET is specified by the
top-left and bottom-right coordinates of the area (Figure 8.3).

Array size

The pixel status information which is copied by GET must be stored in an
array, and of course a suitable size array must first be DIMensioned. The
method for calculating the size of the array which is described in the
Dragon manual is wildly inaccurate and the figures it produces are a gross

12

Chapter 8 Copying the Screen
Figure 8.3 Coordinates for GET

w1, M

®a, T2

overestimate of those necessary. It states that you must declare a two-
dimensional array using the height and the width of the area in pixel units
as the dimensions. Thus for a 50 x 50 pixel area you would need a 2500
element array. Now since each array element takes up five bytes this array
would occupy 12500 bytes of memory. If this was true then the GET and
PUT commands would be of very limited practical use as there would only
be enough room in memory for copies of quite small areas. If you calculate
the array size required to GET the entire screen area of 192 x 256 pixels the
result is 49,152 elements, equivalent to a horrifying quarter of a megabyte
of memory!

The error in the calculation above arises from the fact that it assumes
that the status of each pixel is stored as a number in a separate array
element. Fortunately this is not true and information on more than one
point is actually stored in each array element area. The whole idea of an
array here is really rather confusing and irrelevant as in this case DIMen-
sioning the array is only used by the system to reserve a block of memory at
a particular location. The way this area is then used has no connection with
the normal manipulation of arrays, as each byte is simply filled in
sequence.

The amount of memory really required to store the information depends
onthe PMODE in operation, but let’s consider the situation in the highest
resolution PMODE (4) first. Here there are only two possible conditions
for each screen point, as it is either on or off. Since on and off can be
indicated by a single bit one byte can store the condition of eight pixels.
Thus, instead of each pixel needing five bytes eight pixels can be stored in
one byte — saving memory by a factor of 40! Our 50 x 50 area now only
needs 313 bytes which is equivalent to a 63 element array, and even the
whole screen can be stored in 1229 elements (6144 bytes). As the bytes res-
erved for the array are simply used in sequence there is no need to use a
multi-dimension array.

The only slight problem with making the division bya factor of 40 in one
step is that you can only use whole bytes and whole array elements and
small errors may therefore arise due to rounding. In addition there is a

113

Advanced Sound and Graphics for the Dragon Computer

small overhead in forming the array. With small areas dividing by 40 and
rounding up is always effective, but as the areas get larger some allo-
wances must be made. The simplest way to ensure that you have enough
memory reserved is to divide the area in pixel units by 40 and then add 10%
to the calculation for luck. If problems arise, or you want to use the abso-
lute minimum of memory, try RUNning the program with a slightly bigger
or smaller array.

The array size needed for the other PMODE:s can be calculated in the
same way. Bear in mind that halving the number of individual pixels will
halve the number of bits needed, but that a four colour mode needs twice
the number of bits to code for pixel colour (Table 8.1).

Let’s set up a hi-res screen and DIMension an array of appropriate size
for a 50 x 50 area. The calculated array size was 63 but both the ‘ + 10%’
and ‘trial and error’ methods show that 69 elements are needed.

13 PMODE4, 1:SCREEML1,B3:PCLE
8 DIM ACS
1988 GOTO 189

53

Table 8.1

CALCULATION OF ARRAY SIZE NEED BY GET
FMODE Fi

= byt diwizor Cappry

5 32 166
1 15 =)
z 15 26
3 2 443
4 = 49
GET

In its simplest form GET only needs to include the top-left and bottom-
right coordinates of the ‘source’ area and the name of the array to be filled.

GET(XI,YI)-(X2,Y1),arrayname

195 GETOE,8-(43,430,A

114

Chapter 8 Copying the Screen

If you RUN this nothing will appear to happen, although a copy of the
top left hand corner of the screen will actually have been made in array A.
An optional feature in GET is the G suffix, which gives storage of full
graphic detail.

GET(X1,Y1)-(X2,Y2),arrayname,graphic detail

Adding this parameter ensures that all variations of the PUT command
(see below) will always work properly, but it does slow things down. The
timetaken to GET an area also depends on itssize and Table 8.2 gives some
comparative times for different size areas, with and without the G
parameter. As you might expect doubling the size of the area doubles the
time taken, but the increase in time when G is added is a very significant
six-fold. Much of the time G is not essential and the moral is obviously to
leave it out whenever speed is important. The times for GETting the whole
screenin PMODE4 are0.6seconds (— G)and4.3 seconds (+ G), which can
be placed in context by comparison to the speed of PCLS and PCOPY
which take 0.1 seconds to change the same area.

So far we have merely been GETting ablank area of screen, so let’s make
a solid box in the area so that we see what is happening.

2 LIME: 19, 19 -0 48, 430 PSET L EF
Table 8.2

SPEED OF GET WITH AND WITHOUT FULL GRAPHIC DETAIL

(time in seconds)

38 x '58 bl 168 ¢ 188
~13 .94 .14
+ 3,24 @44 a,2e
PUT

The form of PUT is similar to that for GET in that top-left and bottom-
right coordinates of the ‘target’ area, plus the name of the array containing
the information to be PUT, are the minimum requirements.

115

‘Advanced Sound and Graphics for the Dragon Computer

PUT(X1,Y1)-(X2,Y2),A
263 PUTOH, 500~ 43,330, F

Ifyou RUN the program so far you willseethata filled boxisdrawnand
then this design rapidly repeated in the adjacent area (Figure 8.4). It is
interesting to note that the original box takes 0.22 seconds to draw but the
whole area is then PUT back in only 0.04 seconds. This very simple demon-
stration shows that it can be quicker to GET and PUT adesign than to draw
it from scratch and this is an important advantage of these commands.

Figure 8.4 PUT

WhenPUT isused asabovethenall points inthe target area will besetto
the same condition as the appropriate points in the source area, thus
whatever was previously in the target area is erased completely. Care must
be taken to check that the size of the areayou PUT is the same as that you
GET, or the copying will get out of phase. Figure 8.5 shows the effect of an
error in coordinates and a similar effect will be produced if you GET with
graphic detail (G) and then PUT as described above, without specifying
any of the optional actions.

116

Chapter 8 Copying the Screen

Figure 8.5 PUT coordinates wrong

—_—

Actions

1tis also possible to add a series of optional ‘action’ parametersto the PUT
command.

PUT(X1,Y1)-(X2,Y2),arrayname,action

Five different actions are possible, and these only produce reliable
results if you saved full graphic detail with PUT....G.

The first two of these will obliteratewhatever is in the target area and
replace it with a copy of the source area. To see these in action modify the
existing GETcommandtosave full graphicdetail, add PSETtothe PUT in
line 200, and add a further PUT. . .PRESET command.

100 GET(©.01-(49,49)3,A.G
200 PUT(B,50,-(49,997,H, PSET
219 PUT(S5@,505-(99,99,A, PRESET

PSET has exactly the same effect as specifying no action, producing a
‘positive’ copy in which all pointsinthetargetareaareset thesameasthose
in the source area. The PRESET option is the inverse of PSET and pro-
duces a ‘negative’ of thesourcearea by settingall pointsthat were not set in
the source array and resetting all points that wereset in the source array

17

Advanced Sound and Graphics for the Dragon Computer

(Figure 8.6). As both of these wipe out the target area no superimposition
occurs if you PUT back copies with overlapping coordinates (Figure 8.7).

3 PUTS B, 755-049,1245, A, PSET
%]

22
239 PUT(S5H, 750-(99,124,A.PRESET

Figure 8.6 PUT

[]
m[]

PSET PRESET

You will notice that the speed of operation of PUT has decreased mark-
edly now that a specific action is called for. If you timeitagain you will find
that it now takes 0.28 seconds to put a 50 x 50 area, instead of the 0.04
seconds needed when no option was chosen.

The other three options all make some form of logical comparison bet-
ween the way points are set in the source and target areas. To show how
they operate we will change our box to an empty version, add a series of
circlestothe screen, delete line 230, and then PUT the box over these circles
with all the different options (Figure 8.8).

39 LIMEC13,135-(43,495,PSET.B
43 CIRCLE(25,757,28

58 CIRCLEL 7S, 75,25
&3 CIRCLEC125,75>
73 CIRCLEC17S,75)
83 CIRCLE{225.,7v5),29

233 PLIT(3,53)-(49,995, A, PSET
213 PUTC 53,59 5-{99,991,H,PRESET

118

Chapter 8 Copying the Screen

229 (1
248 PUTC1S
258 PUTC 28

PSET PRESET

Figure 8.8 Alternative PUT actions

PSET PRESET OR AND NOT

119

Advanced Sound and Graphics for the Dragon Computer

PSET obliterates the circle completely and produces only the box.
PRESET gives the inverse of PSET.

OR superimposes the source and target areas and leaves set all points
which were set in either area, giving both box and circle.
ANDresets all points that were not set in both source and target areas
so that only the four small areas of overlap remain set.

NOT inverts all points in the target area, irrespective of what was in
the source area. It therefore produces an inverse copy of the original
contents of the target area (the circle). Notice that NOT does not fill
anarray, even though one must be specified to indicate the size of the
area.

The value of these comparison options will become more apparent if we
look at some applications.

Movement

The simplest way to produce movement is to GET without graphic detail
and then PUT at coordinates which are indexed to variables, without any
option. If you add this autorepeating cursor keyroutine (lines 300—340)
and then RUN in PMODE 4 you will find that the up and down arrow keys
work effectively alongthe Y axis, but that the program crashes if you try to
move left or right along the X axis.

18 PMODE4,1:SCREEM1,8:PCLS

28 DIM R(69)

30 LIMEC18,19)-(48,48),PSET.E
49 XI=1

S8 YI=1

188 GETCB.083-{49,497,H

200 PUTC(X+@, Y+50 - X+49.7+93),A
308 IF PEEK(337 =255 THEHW 300
319 IF PEEK(341 5=223 THENW ‘Y="(-%1
:GOTO 208

320 IF PEEK(342)=223 THEMN ‘’='Y+¥I
‘GOTO 208

330 IF PEEK{:343:=223 THEM X=x-XI
:GOTO 208

340 IF PEEK(344)=223 THEM X=X+XI
:GOTe 208

356 GOTO 29

Notrail isleft asthe stepis sosmallthatthe visible areais obliterated at
each move (Figure 8.9). If you change the coordinates of the original box to
the extreme edges of the area you GET what is happening is more obvious
(Figure 8.10).

120

Chapter 8 Copying the Screen

30 LIMEX©,8)-(49,49),PSET,B

Figure 8.9 No trail left if step small

Figure 8.10 Trail left if no margin

121

Advanced Sound and Graphics for the Dragon Computer

When the increment YI is 1 then a solid block follows the movement, but
increasing YI (line 50) will produce less overlap until eventually if YI is
greater than 50 no overlap will occur.

If you GET graphicdetail and PUT with PSET the program works prop-
erly along both axes but movement is much slower (0.28 seconds/cycle
instead of 0.04 seconds).

106 GET(@.,07-(49,49).A.C

200 PUTCX+0.Y+50)~C¥+49,Y+99),H,
PSET

RUNning the original program whichdoesnotsaveall graphic detail in
different PMODEs produces some strange results, although vertical
movement is again no problem. The program does not crash if you move
horizontally, but it does move in fits and starts in different sized steps! A
little experimentation reveals that in PMODE:s 4, 3 and 1 rapid but rela
tively smooth horizontal motionis possible provided that you are happyto
change the X axis increments to steps of 8.

40 XI1=8

The fastest wayto update eachmove is thus to avoid options, although
this will always.leave a trail unless there is a blank space at the edges of the
area you GET which is at least as large as the step size at each move. The
only disadvantages of making such a blank border are that the area to be
moved must be larger than the actual design and two designs cannot be
placed absolutely side by side without partial erasure of one (Figure 8.11).

An alternative approach is to use a blank array to obliterate the old posi-
tion as you move. The blank array should be the same size as the ‘real’
array, although, surprisingly, you do not have to use GET to fill it. The
simplest method is to PUT each array in turn, although this produces a
violently flashing display.

208 DIM RC693.BCEID
200 PUTCX+0, Y450)-(%+49,'7/+99), A
210 PUT(%+0,Y+5060-(%+49,'7+99,.B

A more rational approach is to erase only the old area if a move is made.
We could do this by moving the erasing line to a subroutine which is only
called if a move is made (PEEK(337)< 255).

300 IF PEEK(337,=255 THEM 300 EL
SE GOSUB Seo

500 PUT(X+0, V+500-(%+49,Y+99),B:
RETURN

122

Chapter 8 Copying the Screen

Figure 8.11 Partial erasure if side by side

An alternative to the subroutine approach is to store the old coordinates
and PUT the blank array back at these. Whatever method you use the main
thing to remember is that consideration of the flow of the program is
important if you are to avoid unnecessary PUT commands and thus
minimise execution time.

Superimposition

The OR option is extremely valuable as it allows youto appear to move one
design over (or through) another, as well as simply to superimpose them. It
is not logically possible to superimpose two moving areas by using
PUT....OR with both arrays as there will then be no erasure of the old
position in either case. The simplest method is to PUT. ... PSET the first
and then PUT. .. .OR the second, so that the first PSET clears the entire
area.

The speed of execution decreases with the size of the area so that
although superimposition of small areas is almost instantaneous the pro-
gress of the entire PUT sequence can be seen in larger areas.

Add the PSET option to the moving PUT of array A, draw a circle, GET
this into another array (B), and then PUT it back with OR.

RCE3 D E‘(bS)
I LEC TS, 250
B GETC 58,8 1-(33, 4:) WA G

123

Advanced Sound and Graphics for the Dragon Computer

208 PUT A+, (4350 = K+43,(+39 3, A,
PSET

21v PUT(58,58 ~(39,39), B, OF

3899 IF PEEK(337 =255 THEHW 208

The moving boxcannow be placed in any position over the static circle.

Selective erasing

NOT and AND do not seem very exciting on their own but a combination
of NOT and AND can be used to produce a selective erasing routine. The
logical sequence is as follows:

1) GET first design into array A.

2) Invert first design withPUT...ANOT

3) GET inverse version of first design into new array B.

4) Superimpose first and second designs withPUT. .. A,OR.

5) Superimpose inverse version of first design over combination of first
and second designs with PUT. ..B,AND.

28 DIM RCEILL.BCETD

€0 CIRCLEC125.750,20

169 GET(©.8-(43,493, A. G

118 PUT(B,83-(43,45), A, HOT

120 GET(B,85-(43,43),B.G

289 PUTC 198,58 1-(149,33), A, OF
218 PUT(198.58 - 143,35 5,B.AMD

The box appears superimposed on the circle by OR (Figure 8.12) and is
then selectively erased completely by AND with its inverse, but only those
points on the circle which are common to the first design are removed
(Figure 8.13).

Saving Screens

In memory

1t is sometimes useful to be able to store the contents of the screen so that
you can recreate it later. For example you might want to be able to save a
partially complete picture at some point, so that temporary alterations
could be made and checked without therisk of disastrous results. The most
obvious way to do this is to PCOPY the current screen page(s) onto other
graphics pages. The number of complete screens that can be saved depends
on the PMODE. If you set the graphics pages to the maximum (by
PCLEAR 8)thenin PMODE:s 3 and 4 one copy can be kept, in PMODEs 1
and 2 three copies, and in PMODE 0 seven copies.

124

Chapter8 Copying the Screen

Figure 8.12 Box over circle

Figure 8.13 Box selectively erased

Of course you can also save only certain pages of the screen where more
than one page is used. Although you cannot reserve more than eight pages

125

Advanced Sound and Graphics for the Dragon Computer

of memory for graphics it is possible to store extra copies elsewhere in
memory. The easiest way to do this is simply to GET and PUT the whole
screen area into an array as described earlier. This takes up the same
amount of memory as the equivalent graphics page, but this memory is in
the variables area and positioned above the program rather than below it.
Using GET and PUT has the usual advantages that different ‘actions’ can
be specified and any part of the screen can be saved and recreated in any
position, but the disadvantage is that it is slower than PCOPY.

Permanent storage

Any screens stored in memory will be lost when the computer is turned off,
but permanent copies can easily be saved on tape as a machine code file
with CSAVEM. This command needs to include the start and end
addresses of the area to be copied, and the number of bytes to be copied
(the difference between these).

CSAVEM “‘name”’ (start),(end),(number of bytes)

These values will vary according to which PMODE is in operation and
which page it starts on (Table 8.3).

Table 8.3
VALUES FOR CSAVEM IN DIFFERENT PMODEs

PMODE STARTX END¥ MO OF BYTES

1536 3871 1526
1536 4€87 3872
1536 4697 3872
1536 V€79 €144
1536 7€79 €144

PN &

% add 1536 for each start Pade Pozition
above Page one.

For exampleifyou have adesignin PMODE 3 which startsonpage 1 you
can save it at any time by stopping the program with BREAK and typing
this as a direct command:

CSAVEM “DESIGN”, 1536,7679,6144

126

Chapter 8 Copyingthe Screen

CSAVEM can also be included in a program so you can define variables
at the start and put it into a subroutine.
18 HE="DESIGH"
144

weee e BOSUE 190955

To retrieve the design you CLOADM as a direct command or in a pro-
gram line. CLOADM does not have to specify a name or any addresses and
on its own it will load the next file it finds back into original position.

CLOADM (load next file onto original pages)

If you give a filename it will search and load that file.

CLOADM“DESIGN?” (load file called ‘‘DESIGN”’ onto original
pages)

The advantage of putting CLOADM in a program line is that you can set
up the hi-res screen first and actually watch the screen fill.

PMODE 2.1:SCREEM 1.8
CLOADM

1998 GOTO 19559

If you want toload the file back onto different pages youcanspecify an
“‘offset’’. Aseach pageis 1536 bytes long each offset o f 1536 will move the
design up one page.

CLOAGMDESTGH" 1538

IfyouRUNtheabove it willload backontopages2to 5 instead of 1to4.
Thiswill proceed OK at first but your program willthenvanish as youload
machine code all over it! Don’t forget that you must clear enough graphics
pages first, by PCLEAR § in this case.

At first sight you may think that you should be able to save the arrays
filled by GET as ASCII files ontape with PRINT # — 1. However thisis not
actually possible as GET does not fillthe array in the normal manner but
writes over all the element markers. In practice this does not really matter
as you can save the screen with CSAVEM and then GET the information
back into the arrays when this has been CLOADMed.

127

Advanced Sound and Graphics for the Dragon Computer

Hard copy

Itis possible to print out the contents of the hi-res screen on most printers
with graphics capability using only BASIC commands. In fact all the
screen print illustrations in this book were produced in this way. The pre-
cise details of the program required will vary from printer to printer, as the
methods of setting up graphics modes are very variable. We cannot
therefore give full details, but will explain the general principles which
must be applied in setting up a printer.

First the printer must be set in graphics mode (see printer manual). You
cannot simply transfer the contents of each byte on the page to the printer
insequence as the bytes are mapped from left to right but the printer works
on vertical segments (Figure 8.14). You must therefore translate the screen
coordinates into vertical sections. In the byte which is transferred to the
printer any bit which is ‘on’ will produce a printed point and any bit which
is ‘of f* will produce a blank. Fortunately the status of each individual pixel
of the display can be found by PPOINT(X,Y). The general sequence of
operations is therefore to read the screen in vertical sections and set the bit
if PPOINT is not zero. Setting the bit can be done by adding the appro-
priate number (1-128) to the byte by a logic test against PPOINT.

Figure 8.14 Comparison of screen and prinler bytes

M mmm ilr i,

EIII:II
Tem"m"
e T w1
| EEEN

PRINTER
BYTES

e w1

53 [MTem_m_]

OreTT

| BEEE |

- EYFEY nrrrrm
5y 1] = =

Toes 165 E-mIm-m
R A s W1l w3
iAol L g0 [esmm 1]
Z ’i’ E :,,: 3¢ [Cw T mT)

g [CE I w3
129 EJTTIT®

Most printers read eight vertical points at a time and this arrangement
will set up the first printer byte which is taken from the top left of the
screen.

128

Chapter 8 Copying the Screen

123
14U PRIMT#-2.CHR$ A)

The character representation of this byte is transferred to the printer
buffer by PRINT #-2,CHR$(A) but this will not be printed until a carriage
return (CHR$(13)) is sent or the buffer is full. To print the first complete
row we must increment X from 0 to 255, and send a CHR$(13) at the end.

1189 FOF
158 HEXT =«
168 FRIMNTH#-2,CHRES$(135

B TD 255

To move down the screen we must increment Y in steps of 8.

199 FOR 'Y=9 TO 131 STEP &
173 HEAT ¥

The Seikosha GP100A is unusual in that it reads only seven bits at a time
and the eighth bit must always be on so Y must be STEPed in 7’s and the
last bit always set.

FOR *Y=p TO 191 STEP 7
A= ?PUINT'/ t1+PPUINT(A‘Y+1

If you want to print only part of thescreen you can set appropriate limits
for Xand Y.

This routine will print the screen ‘as-is’ — that is any bit set will be prin-
ted. This meansthat in atwo-colour modegreen or buff will be printed and
black ignored. In a four colour mode the highest numbered colour will be
indicated by both bits of a pair being printed, and the lowest colour by

129

Advanced Sound and Graphics for the Dragon Computer

neither being printed. The middle colours will then print either the right or
left bit, producing left and right handed zebra stripes (Figure 8.15). It is
sometimes useful to be able to invert the printing and this can be done by a
change in the logic test so that ABS(PPOINT(X,Y +n) — 1) is used in place
of PPOINT(X,Y + n). More complex routines can also be developed for
four-colour modes which sort the colours by their PPOINT value and pro-
duce more distinctive patterns (Figure 8.16).

Figure 8.15 Zebra stripes when picture created in PMODE 3 printed in
PMODE 4

Figure 8.16 ‘Four colour’ print

130

CHAPTER 9
Graphic Presentation of Data

Bar charts
The low resolution graphics are of limited value for drawing most types of
graph as they are quite crude, but they do have the advantage for bar charts
that nine colours (eight plus black) and the normal text are easily available.
Two colours will be needed for the background and axes, but that still
leaves seven colours to indicate different things on the chart.

To demonstrate a low-res bar chart we will start by CLSI to a green
background, set the first colour to 2 (yellow) and form the X and Y axes by
RESETting points to black.

1+ HE

Y 1 HE¥

T Il
The X axis can be labelled by a single line.

S OPRINT ® 4

butthe Y axis requires a loop which moves the print position (YP) up the
screen for each value of Y (YV). YV starts at 0 and increments by (396-
76)32(ie 10) for each repeat.

Now to choose seven pseudo-random values forthe different bars bet-
ween about 0 and 100.

R H =R

118 DIM A FOR: M=G TO &
MO 380+ MELS 0 HEXT M

The pixels from 5 to 24 (20 positions) must represent 100 divisions hence
each block will be equivalent to five units. Our array elements must be
therefore converted to a number of blocks (BL).

131

Advanced Sound and Graphics for the Dragon Cormputer

179 FOR M= TO &:BL=RATHS
2B MEXT H

Finally we loop up from the X axis (5) SETting the required number of
blocks (BL + 5) at the appropriate Y point (29-M), moving the X coordi-
nate (N*4+32) across four points and the colour up one number
(C=C+1) for each complete column.

126 FOR M=S5 TO BEL+S:SETOHEG+Z
2=,

3 HEXT M-
z U HE=THEE"S
ELSE FUH

C+1
+IF Ag="" THEM 128

A number of things can be done to tidy up the display. First we should give
the graph a title and label the axes.

> n FROFIT"

The list of numbers on the Y axis is rather ragged but it can easily be
formatted with PRINT USING *“ # # #* and lined up correctly.

30 PRINT 02¢P. " " s PRIMT USTIHG" ###
i

Finally the effect is more interesting if some delay loops are included to
slow down the calculations.

185 FOR T=1 TO 188
195 FOR T=1 TO 198

Line graphs
Line graphs can be dealt with easily in high resolution (Figure 9.1). First we

need to set some screen coordinate limits for the start and end of the axes
(XS, XE, YS, YE).

18 HE=48: HE=228 Y5

168 YE=Z8

132

Chapter 9 Graphic Presentation of Data

Figure 9.1 Line graph

dlavalinibond

cbiliaalig

The size of the X axis divisions (XI) depends on the number of readings
to be fitted in. For this example we will generate a random number of
readings which is in excess of five, but this would obviously normally be
INPUT by the user.

The data to be plotted needs to be entered into an array, in this case we
will do it at random.

SRR R
A check throughthe array forthe highest value is included and this value

is then scaled down in 10% steps until it is on scale.

TO HE
I THEW HI=RIHX

IF HH
GOTO 12

The Y axis divisions are now set to 50 times the current scale factor (SF).
123 Y I=58%

133

Advanced Sound and Graphics for the Dragon Computer

Now that the data is ready the hi-res screen is set up as white on black by
COLOR 0,1, and the X and Y axes drawn.

144 PMOCE4, 1+ SCREEML 130 FILS1 - DOL

158 LIME
168 LIHE!

Xl apart.

128 LIMECH
193 HEXT N

The Y axis markings are more complex as three different length lines are
used to indicate each quarter of each main division. They are placed
increasing distances apart by increasing the STEP size by factors of 2. The
first type of mark is most frequent and is 3 points long, the second type is 5
points long, and the last is 8 points long. The marks overwrite each other
but this method is fast and is much simpler than the alternative sorting
procedures.

203 FUR H=45 STEF -¥1s2
218] 2.M0, PSET
=]

238

248

258

2658

278 S

288 MEXT M

As no text has been included in this program it is useful to have a scale
line which gives a visual indication of the scale factor in use. This is formed
by making a blank move to the left of the Y axis and DRAWing a scale
mark there at a scale (S) which is 40 times the scale factor applied to the

& A" EM"+STRSY X
1S 28 3+ S +STRSC
1+13, ~SLZRULIBLR2:S4"

We now need to make a blank move to the start coordinates at 0,0
assumingthe graph goes through the origin (if it does not you need to make
a Blank Move to the first X position and first Y array element.

134

Chapter 9 Graphic Presentation of Data

306 DRALYEM"+STRSC W5 D+, "+3TRSCY

The graph lines are now constructed by DRAWing a MOVE to coordi-
nates defined as the next X positionand a Y value calculated from the con-
tents of the appropriate array element multiplied by the scale factor.

TO HE
0

STER 3
2

143 RN

If you add the final line and RUN the program will cycle continuously
through a series of randomly generated graphs.

Contour maps

Adevelopment of the line graph is the contour map (Figure 9.2)which links
together points with the same value. This value is normally height (the
example is the view through our window!) but it could just as easily be
isobars on a weather chart. First we set up the screen and make a box
around the map.

10 PMODE 4,1:SCREEN1,@:PCLS
20 LINE(10,10)-(1408,160,,PSET,B

Figure 9.2 Contour map

135

Advanced Sound and Graphics for the Dragon Computer

The secret of making a simple program here is to enter the coordinate
information sensibly. The DATA is taken from the map as pairsof X and Y
coordinates which give the position of the next point with the same value,
that is the next point to draw to (Figure 9.3). A pair of zeros indicates that
particular line has ended and the next coordinates define the start of a new
line.

119 DATA 1.1.1,1.0.9,1,2,2,1.9.90
»1,4,1,3,2.2,3,1.0.0,1.5,2,4.,32.2
.4,2,5,1,6,1.0.0.1,6,2,5,3,4.4,3
.5,2.6,2,7,1.0,0,7,2,8,1,0,0,1.,7
,2,6,3,5,4,4,5,3,6,3,7,3.8,2,9,1
210,1,11,2,12,3,13,4,14,5,0,0. 11
,1,12,2,13,3,14,4,08.0,12, 1,13, 2,
14,2, 0,0.13.1,14,.2.9.0

120 DATH 14,1,0.,0.4,5.5,4,6.,4.,7,
4,8,3,9,2,10,2,11,3.12,4,13.5, 14
,6,0,0,1,8,2,7,3,6,4,6,5,5,6,5.7
,5,8,4,9,3,10,3,11,4,12,5,132,6.1
4,7,0,0,1,9,2,8,3,7,4,8.5,7.5,7,
7,7.8.,6,9.5,10,5,11.6,12,7,13.8,
14,9,0,9,1,10,2,9,3.8,0,0,4.9,5,
8,6,8,7.8,8,7,9,6,10,6,11,7

130 DATH 12,8,13,9,14,10.0,0.4,1
9,5,9,6,9,7.9,8,8,9,7.10,7,11,8,
12,9.13,10.14,10,14,11,14,12,14,
13,13,14,12,15,11,16,10,15.9,15,
8,15.7,15,6,16,5,1€.4,16,3, 16,2

15,1,14,1,13,0,0,4,7.5,6,6.6,7.,6
,8,5,9,4,10,4,11,5,12,6,13,7.9.9
,3,9,2,10,2,11.,2,12,3,13

140 DATH 4,12,3,11,3,10.3,9,0.0.
1,11,1,12,0.0,1,15.2,16.,08,0,1,1¢
,90, 0,7, 16,8, 16,0, 0, 9, 1€, 10, 16,0,
9,12,1€,0,0,14,1€,0,0,14,135,90,0,
14,14,0,0,2,14,3,15.0,8.2.13,3,1
4,4,15,5,14,5,13,5,12,5,11., 5, 18,
9,9,11,9,11,10,12,10.0,0,11,13,1
2,13,0,0, 1,16

136

Chapter 9 Graphic Presentation of Data

Figure 9.3 Connecting points on contour map

/{/PGINT z
POINT |

VSTART

The start position is first READ, a Blank Move made to this, and the
pointer RESTOREGA to the start of the DATA.

30 READ ¥.,Y:DRAW"BM"+STRS(X¥10)+
", "+STRSC 178~ Y410)) : RESTORE

The 175 pairs of DATA points arenowreadin turn. If X and Y arenot
zero then a MOVE is made (line drawn) to coordinates calculated by X and
Y multiplied by 10, and thenthe next pointsREAD. Asthe first DATA was
RESTOREGA the first line is of zero length to and from the first point. If a
zero is READ then the next values of X and Y are READ, a Blank Move
made to those coordinates, and the next values READ.

48 FOR N=1 TO 175

S8 READ X.Y

68 IF ¥=0 THEN READ X.':DRAW'BM"
+STRSCXE1DO+", "+STRSC 170~ ¥105)
sMEXT N:GOTO 9@

780 DRAW"'M"+STRECX#10)+", "+STRSC |
I ¥10835

80 NEXT N

98 GOTO 99

Pie charts

Circular pie charts in which the size of the slicesis the indication of quantity
can be easily produced in high resolution. First we need to call a suitable
four-colour hi-res mode, set upanarray to hold our values, and set the first
colour to 1. Pie charts are usually divided into quite a small number of
slices so we will take a series of seven random numbers. Note thatthe total
(T) also needs to be calculated.

137

Advanced Sound and Graphics for the Dragon Computer

@ PMODE 1.1
@ D IMSL U=1
@ FOR H=1 TO 7eSLOMr=RHUC 10 : T=
+SLOM 2 HEST M

FEEM1.@:FCLS

Now we can draw a circular outline, and then a series of arcs of increas-
ing radius and differing length to indicate the slices (Figure 9.4). As
explained earlier the arcs will not be completely filled, but they are still
quite effective, and very simple to construct. The filling is more complete
in PMODE 1 than in PMODE 3.

TE oo

Cloeo & s
[P

[e g s N R N
o=

A$=IHKEYS: IF A$="" THEN 12&
E RUM

Figure 9.4 Sevenslice pie chart starting from 8 (90°)

138

Chapter 9 Graphic Presentation of Data

The default start (ST) value will be 0 so that the first arc will move
clockwise from 3 o’clock. The finish (FI) of the arc is calculated in appro-
priate units by dividing the slice value in the array (SL(S)) by the total (T)
and adding this to the start value. After each arc is plotted the new start
value (ST) is set to the old finish point (FI), and the colour is incremented
by one. If the colour is greater than 4 it is reset to 1. The largest ARC is
slightly smaller (R = 88) than the radius of the CIRCLE (R = 90) so that the
slice formed in the background colour does not erase the outline.

If you want theslices to start from 12 o’clock youneed toset STt00.75 at
the start (if values larger than 1 are generated the integer part is ignored).

IR

W

T=0, 75

28 LIMSLY

T
o

As only four colours are available it is at first sight difficult to indicate
more than four different slices but one way to ensure that even slices with
the same colour aredistinctive is to change the step size of the arcs if more
than four slices are to be plotted and it is also useful to link the step size to
the colour number (Figure 9.5).

]
=t

T8 FOR R=1 TO 335 STEF
Figure 9.5 Seven slice pie chart starting from 0.75 with step size linked to
slice number

oo
St

ey

orreyppp e ???

139

CHAPTER 10
Three Dimensions

Presenting a three-dimensional view of anobject is a very effective way of
making it look more solid. The important thing about three-dimensional
representation is that lines which are supposed to be further away are
drawn smaller. For example a looping program which draws a series of
boxeswhichgetlarger and are of fset slightly eachtime gives the impression
of a square cone (Figure 10.1).

SCHEEM 1.9 PCLS

155 STEF 2
+F (5, PEET, B

3 RAS=IMKEYS: IF A$="" THEM 529
FIUH

141

Advanced Sound and Graphics for the Dragon Computer

An even more real tube effect is produced by drawing a series of offset
CIRCLES of increasing radius (Figure 10.2).

50 T0 120 STEP 2
)

e W N
O

N |j(,ll l' ‘1'

i

)
1 1 ()
T lln,,l|||t'll('|”'|(,
|‘||(1||‘ ‘Illul
I
' ‘lll”I

If we set up some limits for X and Y axes (XS =X start, XE= X end,
YS=Y start, YE=Y end) we can draw a rectangle by a series of lines
connecting these points (Figure 10.3).

40
[21%]
21
23
24
26
27

e &

Figure 10.3 Lines connected in rectangle

To make this appear as a flat surface in three dimensions we must
displace the back edge by some distance to one side (DI) (Figure 10.4).

142

Chapter 10 Three Dimensions

SYED=CHE-DILYE 2 PS

2=CAS-0I,YE S PSET
(AE-DI,YE 2, PSET

~_ \\x
N~ ~

Although thislooks ‘flatter’ it is still not quite correct as the back edge is
the same length as the front edge. It is the line from (XS-DI,YE) to
(XE-DIYE) (line 240) which needs shortening at one end and a little
experimentation will reveal a value for this perspective factor (PF) which
‘looks’ right. You must not forget that line 270 must also be modified.

CHE-DI-FF.YED
T
LIMECAE, 'S5 -0 #E-DI-PF, YE 5, P3

If you want to produce a three-dimensional graph you can usually
actually get away with forgetting about getting the perspective exactly
correct, especially if you leave out the top horizontal and right vertical
lines, so delete the perspective factor and lines 240 and 270 (Figure 10.5).
We need some data to plot so let’s generate some at random.

B DIM AC15,150
B FOR W=8 TO 15
v FOR M=9 TO 15
@ HCH, M o=THTC RHDC

FHDCHM

23

B HEAT M
59 MEXT N

143

Advanced Sound and Graphics for the Dragon Computer

Figure 10.5 X and Y axes

That produces 225 numbers in a 15 X 15two-dimensional array which we
will use to indicateheight. To produce a 3-D graph linking these points we
need to define the divisions on the X (XI) and Y (YI) axes, and arrange to
step through the coordinates. The X loop is outside the Y loop so we will
move first from front to back.

28 %1=20:Y1=18
299 FOR M=X$ TD XE STEP »I
339 FOR M=YS TO YE STEP-YI

The step is negative for YI as we want to work from front to back. The
correct X axis array element (XP) is selected by dividing the current N
minus the start position by the size of the divisions.

300 AP=CH-4S)41
Wemust next make a blank moveto the first position, calculate the next

Y array element and move (draw a line) to the point defined in that element
(Figure 10.6).

«©

319 DRAW'EM"+STRSCHI+", "+STRS(VS
)

328 D=9

349 YP=CYS-M]

358 DREAW'M"+STRSC H~0 o+", "+STRSCM
=RCAPLYP)

Figure 10.6 Front to back moves

Chapter 10 Three Dimensions

The X axis element must take into account how much displacement (D)
to the left must be made. For the first point this is set to 0, but for
subsequent points it must be calculated from YI.

D=D+C Y I¥z o
HEAT 1M
MEXT M

At the end of the first front-back line the X position is incremented and
the next line drawn. The left-right lines are drawn in a similar way (Figure

10.7).

419
420
430
449
(M
450
460
47

D=0

FOR M=Y'S TU YE STEP-YI
YP=0YS=1 04]
DRHN"EM"+t.TF’$f..u—E~ 2+, NHSTRS

FOR K=
AP=0 N-

] TU #E STEP I
pRL
DF’HN"!‘I"«'-‘:TF‘& H=D i+", "+STRS. M

=ACAP<YP DD

499
js1515]
518

HEAT N
D=D+{Y1x 25
HEXT

Figure 10.7 Plusleft to right

If you want to include vertical lines to indicate height you can add these
lines which DRAW with N (no update) so that the last position is
remembered (Figure 10.8).

I36E1 DRAW" NM" +STRSC H-D 34", "+STRS(
13

145

Advanced Sound and Graphics for the Dragon Computer

489 DRAW"HM"+STRSCH-0 o+", "+STRS(
Mm;

Figure 10.8 Vertical lines included

It is also possible to plot in three dimensions without ever showing the
axes (Figure 10.9).

Figure 10.9 Plotwith axes omitted

146

CHAPTER 11
Rotation of Figures

Using angled draw command

The simplest type of rotation is catered for directly in the BASIC DRAW
command in which the angle can be specified from 0 to 3, to give four
copies transformed at 90 degrees. In effect this means that at each turn U is
read asR, Ras D, D as L and L as U, etc. At first sight you may think that
you could replace these directly with the diagonal DRAW parameters (E,
F, G and H) to give the intermediate positions, but life is not that simple
(Figure 11.1) shows two versions of the same design which differ by an
angle of 45 degrees and if you look closely you will see that the number of
pixels needed to make each section of the same design is actually different
in the two cases. This is because all these commands move an absolute
number of pixel units, but the hypotenuse of an isosceles triangle is
actually almost 1.5 times as long as the other two sides. Thus three units
Up, Down, Left or Right mean the same actual distance on the screen as
twounits of E, F, G or H. In Figures 11.2 and 11.3a circlewith a radius the
length of the design has been made around alternative figures made with
equal numbers of pixel units and with the number of units corrected for the
difference in direction.

Figure 11.1 ‘Draw’ing at an angle

[nmnes

11T
11T

1
11

147

Advanced Sound and Graphics for the Dragon Computer

This program rotates the two alternate pictures through all the possible
positions, and gives the effect of motion by drawing in foreground and
then background colour.

18 PMOCE 4,1:SCREEM 1,8:PCLS
20 A%$="H3U1EE3F3016
38 B$="UU4E11R4D4G11L4"

49 FOR A=0 TO 3

S8 FOR C=1 TO @ STEP-1

60 DRAW "A"+STRSCAI+"C"+STRSIC)+
A%

70 HEXT C
88 FOR C=1 TO @ STEP-1
99 DRAW "C"+3TR$(C 1+B%
188 HEXT C

118 HEXT A

128 GOTO 1Z@

Figure 11.2 Equal numbers

Figure 11.3 Corrected

Using mathematics

To mathematicians all things are possible (they tell us), even if we cannot
understand why and how. If you are really interested in producing complex
rotations then you are going to have to brush up your knowledge of trigo-

148

Chapter 11 Rotation of Figures

nometry and matrices and also find a good book on the subject. However,
as an introduction we will look at how to rotate a figure in two dimensions,
as this is quite easy. First you need to set up the screen and define the point
about which you want to rotate (XS,YS). A small cross is formed to mark
this position.

38 PMOCE 4. 1:SCREEN 1.8:PCLS
419 128:%5=9¢5
38 DRAW"BM"+STR$! ¥
»+"4D2L2RE"

2+, "HSTRECYS

Now weneed something torotate, so let’s form a bisected triangle pointing
upwards. This is made by connecting four points and we define each of
these interms of the number of screen pointsthey are away from the centre
of rotation along the X (P1(N)) and Y (P2(N)) axes, anything to the left or
up being negative. We will put these into an array as it makes the program
for the calculation of each point neater, and then PSET them.

dvzl CIM Pn‘w quw

89 P1C45=30: P20
128 FOR HN=1 TO 4
158 PSETCAS+PLCH 2, YE+P2U M)
188 HEXT M
239 GOTD 238
To connect the points together wecanform LINEs, and as we must con-
nect themintheorderof 1t02,2t03,3to4and 4to 2 (Figure 11.4) we will
put this order in a DATA statement and READ it back from there.
13 DATA 1.2,2.3.3,4.4.2
178 FOR L=1 TO 4
126 READ N1.H2
193 LIMECAS+P1CHL 1, vS+P20ML 3)~C¥
S+P1CH2 S+P20 M2 5 5, PSET
288 HEXT L
218 RESTORE

Figure 11.4 Lines connected to form bisected triangle

149

Advanced Sound and Graphics for the Dragon Computer

Now for what looks like the hard bit, calculating the new positions for
each point when it is rotated through a certain angle. The rules are:

1) The angle must be given in radians, so degrees must first be con-
verted.

188 FOR AM=1 TO 258 STEP 99
118 A=ANX3. 142138
228 HEXT AM

2) Thenew X and Y axis positions (NX(N) and NY(N)) for each old
point are calculated by the following two formulae.

38 MXON =P 10N HC0SCRA M4+P20 oSN
)

i4E‘ MW N D= =PLOHOHSTHOAD+P20M YRE
OSCAY

Note the minus sign in the second line and also remember that these are
still only displacements from the centre of rotation so we must add this
back on to find the actual screen positions.

The STEP in angle included above is 90 degrees so the triangle will be
constructed in four alternative positions (Figure 11.5). If you reduce the
STEP the number of positions increases and the result can become very
complex (Figure 11.6) and yet another way of generating patterns.

Figure 11.5 Triangle rotated through 360° in 90° steps

150

Chapter 11 Rotation of Figures

Figure 11.6 Triangle rotated through 360° in 10° steps

The design you rotate can be of any shape, and does not have to touch
the centre of rotation. Work out for yourselves what modifications you
need to make to the original coordinates and DATA to produce the picture
inFigure 11.7.

Figure 11.7 Rectangle rotated away from centre

A

\

N7

¥ £

N
b3

\\J _}

-
S
s !
4‘./ e
e, \ﬂ\‘

7
,

151

CHAPTER 12
Instant Keyboard Access to Hi-Res
Commands

Although we have already explained in detail how to use each of the hi-res
graphics commands in your programs, all your efforts have had to be plan-
ned in advance. On the other hand drawing directly on the screen can be
very useful as you can change your ideas easily as you go. If you try to use
INPUT in hi-res you revert to the text screen as INPUT halts the program.
On the other hand INKEY$ can be used, the simplest form of ‘direct
drawing’ scanning INKEY$ for letters which can be used in a DRAW
string.

1 PMOCE 4,1:SCREEM 1.8:FPCLS

29 A%=IHEEYS$: IF RA%="" THEH 28

A LRAW A%

GOTID 25

RUN this and you will find that each time you press a valid key (U, D, L,
R, E, F, Gor H) you will DRAW Up, Down, Left, Right or in one of the
four diagonal directions.

Of course that is of limited practical value as you can only DRAW in
simple ways, and cannot even MOVE without drawing, so now we will
consider how to build up a sophisticated direct drawing program which
allows you to manipulateall the graphics commands directly from the key-
board whilst viewing the hi-res screen. This relies on keychecks using
INKEYS$ and also certain PEEKs to the keyboard scan routines, provides
single key definition of graphics commands, and extensive use of GET and
PUT.

Setting up

The first task is to set up the screen with therequired PMODE, SCREEN,
and foreground and background COLORs.

10 CLS:PRIMT"PMODE" : INPUT P:PRIM

T"COLOUR SET":IMPUT SH:PRIMT"FOR

EGROUMD COLOUR" : IMPUT C1:PRIMT"B

ACKGROUHMD COLOUR": IMPUT C2:PRIMT

153

‘Advanced Sound and Graphics for the Dragon Cemputer

"% START AND END": INPUT XS, XE:PR
INT"Y START AND END":INPUT *S,YE
:GOTO SBvEn

SeBy PMODE P, 1:SCREEN 1,SN:PCLS

C2:COLOR C1,C2:DRAW"C"+STRS(C1)

A seriesof arrays must be DIMensioned to hold variousareasto be taken
by GET commands. These are each described in detail later. The start posi-
tion is defined by X and Y as screen centre (128,96), and the cursor incre-
ment (IN) set to 4. X and Y are kept updated in the program and always
indicate the current screen position. Finally a list of the single keys which
will be used to access the graphics commands is made in VK$. Note that
thereis a space between W and S, and two keys are defined by their CHR$
codes. These are CLEAR and ENTER, which are not displayable cha-
racters.

fmgj_om CUC 183 DI

W ecan now g obackt o the main keycheck routineat 1000.
5928 GOTO 1899

Keycheck routine

Repeated movement in the same direction is easier if keys autorepeat. To
give autorepeat the main keycheck routine looks at locations 337 and 135
instead of using INKEYS. The keys are sorted by comparing the CHR$
code of PEEK(135) against thelist made in VK$ using INSTR. The value of
Kwilldepend ontheposition of the character in the list, and willlead to an
appropriate subroutine.

1831 55 THEM 1138
1918 5
16925 AS=CHRSC A
1938 K=IMSTRI1,VK$. A$)
1949 0N K GOTO 1209, 12

Chapter 12 Instant Keyboard Access to HiRes Commands

If the key pressed is not in this list control falls through to the cursor key
check. A logical test for both shifted and unshifted keys is made, and the X
and Y coordinates updated by the current size of increment (IN) as appro-
priate. Checks are included to ensure that the limits of the defined screen
area are not exceeded.

oo S

oSS S

B3
19
11
12

Cursor

The cursor needs to be totally non-destructive or it will erase part of the
design on the screen. A very small non-destructive cursor can be produced
by reading a pixel with PPOINT and then PSETting, as described earlier,
but a better way is to GET and PUT an area of the screen around the cur-
rent position. (This conservative (with asmall c) GET and PUT technique
is also used extensively elsewhere in this program.) Any size cursor can be
produced but 2 pixels by 2 pixels is convenient. We GET this into the cursor
array (CU), with graphic detail, and this array is immediately PUT back
with PRESET which inverts the display at that point. After a short time
delay the original screen is recreated by PUTting back array CU with
PSET. The overall effect of this is a rapidly flashing square cursor,

1138 GET
1143 PUT
RESET
1159 FOR H=1 TO 19:HERT

1168 PUTC X M= AHLHL 0L CULP
SET

+1.%+1]
+1.%+10

Oneis subtracted from the start limits for Xand Y to preventthecursor
trying toreachillegal negativecoordinates when moved to the extreme top
or left.

Moving and drawing
If you RUN this you will now find that the unshifted arrow keys will move
the cursor around the screen, but that no trail is left.

However we really need to produce two different possibilities, moving
without drawing, and moving with drawing. If wetestlocation 337 against

155

‘Advanced Sound and Graphics for the Dragon Computer

both 159 AND 191 we can distinguish that one of the shifted cursor keys
has been used, whilst still retaining the autorepeat. If an unshifted key has
been pressed then a Blank Move is made to the new X and Y coordinates,
but if a shifted key is used a MOVE is made, thus drawing a line to the new
X and Y coordinates. The line is drawn in the current foreground colour.

F FEEKC3 59 AHL FEEKY

B S TREC

Vi I

TR

RUN again and note the difference between the shifted and unshifted
keys.

Single key routines

A whole series of graphics routines can be called by pressing a single key.
Wherever possible the key is used as amnemonic(prompt) for the action.
The routines vary widely in their complexity, so let’s start with something
very simple.

Cursor increment

The distance moved by the cursor in each cycle is controlled by the incre-
ment IN which is originally set to 4. The keys 1 to 4 are designated to give
four alternative values for IN of 1, 2, 4 and 8.

SGOTD G
SOTO 19
GOTD 19
SLOTO LEE

Try RUNning again and see the effect of pressing keys 1to 4 on the rate
of movement and drawing.

Leaving yourmark

‘Whilst shifted arrows can be used to DRAW lines this can become tedious,
especially forlong distances. It would therefore be convenient to be able to
use commands such as LINE, but of course these require the coordinates of
both ends of the LINE to be specified. To usethese we must leave a marker
at the start of the LINE and then move the cursor to the end point. First we

156

Chapter 12 Instant Keyboard Access to Hi-Res Commands

indicate that we want to drop a start marker by pressing the space bar to
reach the subroutine at 3200.

=1a%=10
0 1899

v 1
1.Y0=1 o= 041,50+ 1 00

FUTE 01, W0=1 p=C 0+ 1, V0+1 o
SET
GOTD 1869

The first line is skipped the first time through as CF has the default value
of 0, sothe ‘old’ Xand Y positions are read into XO and YO and the cursor
flag (CF) set to 1. The screen contents at the old position are now taken
with GET into the old cursor (OC) array, and PUT back PRESET to leave
aninverse square at the origin. Youreturn to the keycheck routine and can
movethe flashing cursor as before until you reach a point where you want
to make another decision.

1f you change your mind and decide that you want to erase your marker
without using it just press the spacebar again. As CFis now 1 you will erase
your mark.

Line

Pressing L indicates that you want to draw a LINE from the mark
(X0,YO) to the current cursor position (X,Y). If you have not made a
mark CF will be 0 and you jump straight back. You must also PUT back
the screen display at the old cursor position and reset CF.

THEN 1898
=101 = 0L DL

1298 IF
3

ZET

Rubout

1f you decide that your Line was a mistake you can use R to rub it out by
means of LINE with PRESET in the same way.

IF CF=8 THEHW 1998

Pl ITE A0 =1, %0=1 0= A0+ 1, W0+ 0,

1. PRESET

LvIJTIJ 18815
157

Advanced Sound and Graphics for the Dragon Computer

No-update

It is sometimes convenient to form a series of LINEs which radiate from a
central point. The routine for this is reached through N and is even simpler
as you just draw from the old cursor position to the new but do not erase
the old mark.

B THEM 1233

U =i 0L PEET

1933
19118
1921

cnf—

GOTO 159

If youdrop a mark, move to aseries of different positions, and press N at
each point you will produce a series of lines.

Finally press the spacebar to erase the old position marker or use ‘L’ine
for the last line.

Boxand filled box

As both empty and filled boxes are formed by adding suffixes to the LINE
command these can be produced by similar routines. A mark is dropped
and then the cursor moved to the diagonally opposite corner and B or F
pressed.

1383 IF

=3 THEM 1223

O=1.%0=1 b= =0+l r0+1 0,

00
GOTO 186

AR

ET.E

1B IF CF=3 THEM 1038
1618 PUTCAD-1.70-1 0= 0+1, Y 0+1 3,

O, PSET
B LIMECHD. YD ET,EF
1633 CF=0:C0T0 1929

Circle

To produce a CIRCLE we need to define the centre and the radius. The
centre is marked as before, the cursor moved out to the edge of the pro-
posed CIRCLE, and C pressed.

1433 IF CF=B THEMW 1888

1413 PUTCX0-1, Y0-1 D=0 A0+1 . W0+1 D,
0o, PSET
R=

SOR T ABST KO- 02 4 AR D

Chapter 12 Instant Keyboard Access to Hi-Res Commands

It does not matter in which direction you mark the radius (R) as it is
calculated as the hypotenuse of a right-angled triangle formed by the
ABSolute differences in X and Y coordinates between the mark and cursor
positions. The circle will be drawn in the current foreground colour, but
this can also be changed by a single key command to give different
coloured CIRCLEs.

Ellipses
Ellipses are just varieties of CIRCLEs as far as the computer is concerned,
but you must now specify both Width and Height separately so some
modification is necessary.

1588 IF
1518 PUTY

1958
PR ANE S W LN BV

To form an ellipse mark the centre, move to a point which is half the
width of the ellipse away along the X axis, and half the height away along
the Y axis (Figure 12.1), and then press E.

Figure 12.1 Cursor in position to mark height and width of ellipse

.
— _—#—__q_ﬂ""-s.

GET

Any area of the screen can be stored in an array by reaching the GET
routine via G. The size of the array originally set up will take the entire
screen so there should be no problems. The screen box to be taken is

159

Advanced Sound and Graphics for the Dragon Computer

marked as for a normal box, except that you must mark the top-left and
bottom-right positions in that order.

1788 IF CF=5 THEH 156

SGOTO

Thesizeof the box alongthe X and Y coordinates must be recorded as
GX and GY so that it can be PUT back correctly.

GET s very useful for producing copies of a single picture elsewhere on
the screen, or for experimenting with different positions for a design.

Backup

As your designs become more complex you become increasingly afraid
that you will make a disastrous irrevocable error. To guard against this you
can include a ‘backup’ facility which you can use at any point by pressing
‘CLEAR’. This facility also gives you the ultimate in ‘rubber-banding’ (or
what happens if?) as you can store the screen and actually find out.

3798 GETY
2718 SOUND

JYEDSE
GOTO 1888

This GETs a copy of the entire work area of the screen into array SC,
gives a signal, and returns. To PUT this screen back at any point press
ENTER.

Of course this routine will only store one screen as each time you use this
copying process you overwrite the old screen you stored, but itisinvaluable
for temporary storage if your nerves are bad. Get into the habit of pressing
CLEAR when you can’t think what to do next, and before disaster strikes.
If you really need two backup copies of the whole screen you could GET
another one into the GP array.

PUT

All the different options of PUT can be used to recreate the area taken by
GET into the GP array at any screen position with any action. The top left
coordinates are the cursor position and the others are calculated from the
record of the size of the area (GX and GY).

P gives PSET

160

Chapter 12 Instant Keyboard Access to Hi-Res Commands

1aGPLPSE

[Pk

SGOTO 1EEE

=G . GF L PRE

S0ILIME SLOTD 1w

GF . AL

SOUHD

Ifthe coordinates fall off the screenthe recreation will be corrupted, soit
isbest to use the backup routinefirstif youareclose tothebottom or right

hand side.

Kill

If you want to abandon the current effort and PCLS press K. As thisis a
permanent action which must not be called by accident certain safeguards
arebuiltin. A non-destructive inversion of the top of the screen s givenasa
warning, and K must be held down for 5 cycles within 6 seconds foraPCLS

to be carried out.
7B GETC B, B
2718 PUTCB. B 235,
=28 IF CL=8 THEM
ELSE CL=CL+1:IF TIMER:3

4 CL=8:ELSE IF CL=5 THEMW PLCLS CZ

=

161

Advanced Sound and Graphics for the Dragon Computer

55,18 2 M, PEET

When you press K you GET a band at the top of the screen into array
WM (warning mark), and PUT it back PRESET (inverted). The first time
through the TIMER is reset, the clear flag (CL) incremented by 1, and WM
PUT back PSET. If K is still pressed the TIMER is checked against 300,
and if this value is reached the clear flag is reset. If CL hascountedup to 5
then a PCLS occurs.

Change colours

Nowthat we have started running out of suitable keys we will haveto use W
to indicate Which colours to use for foreground and background. As we
have no text available on the screen so far indications of what stage you are
at is given by movinginverted blocks across the top of the screen. The first
block is inverted towards the left of the screen indicating that the fore-
ground colour is to be entered as C1$. As we need to use the non- repeating
INKEY$ here the autorepeat must be disabled by POKE 135,0. Once the
foreground colour has been entered the original block is PUT back, an
inversion made on the right of the screen, and the background colour
entered as C2$. Finally this block is PUT back and the COLORs changed
by taking the VAL of C1$ and C2$ and DRAWing ““C’” +ClI8.

GET: 48

CTeE IS

FUTC 48, 13 - .
GET: IJd;U - 17 2. 1
FUT 1 i

Paint coordinates and colours are entered in a similar way, but as PAINT-
ing often causes unexpected results a backup copy is first automatically
made by calling the routine at 3700, and the Paint Flag is also set to 1. The

162

Chapter 12 Instant Keyboard Accessto Hi-Res Commands

cursor is seton the point tostart PAINTing from, and Q pressed. A block is
displayed at the left, and the first colour entered. The second block indi-
cates the second (border)colour, and the final block asks for confirmation
of your decision. If PAS$ is not Y then the PAlNng is abandoned.

1HEH FF=1-5LOTO

Clg="" THEW 2

SET

FRLEG
3 PR FRES

FAE=IHEE s IF PR%="" THEMW 2
THEH FLITE S

"ET LOTO 18
WAL CTE 3 VAL

1t is possible to form only an arc of a CIRCLE or ellipse if you define the
start and end points, but first the Width and Height must be defined as
described for ellipses.

THEH LHAEIE

PN

S TN N

Rop b i 0% 0%

163

Advanced Sound and Graphics for the Dragon Computer

You can reach this routine from A but there is a practical problem in
indicating the start and end points by single keys, as even the keys 0 to 9
would only allow 10 different arc points. The actual values for start and
end pointsneed tobe between Oand 1 and the followingsolutionallows you
to enter easily decimal numbers via INKEYS$. First the start value. Line
4070checks INKEY$ and if this is not empty then 4080 checks whether ST$
was CHR$(13) (= ENTER). If not ST$ is added onto the end of T1$ and
another ST$ taken. Thus numbers are added onto T1$ until ENTER is
pressed. In the same way the end point is built up in T2$ from FIS.

3978 STH=IMHKEYS: IF ZTH="" THEHW 4

arve
4UF’U IF

HRE$C 120 THEW T1$=T
o]

PR.PSET
S PR.G
.PR.PRES

3120 FIs=IMKEYS: IF FI%$="" THEM 4
128

4129 IF FI%->CH
ZH+F IS GOTO 4120

$0122 THEM T2$=T

When both start and end points have been entered the arc is drawn.

245,185, PR, PSET
M HALYALITL

Asyoumay want to add to this arc Q8 waits to see if you want A for arc
again. If so T1$ and T2$ are emptied but the shape of the CIRCLE is
retained as W and H are not reset.

4160 QE=IMKEYS: IF D$="" THEM 41&
5]

41?U IF @
GOTO & 5]

4129 CF=9:T1s="":T2%="":GOTO 180
5]

"H" THEM Tig="":T2

SAVE/LOAD

Once you have completed your design then presumably you want to be able
toSaveitsoSleadstothe SAVE/LOAD routine whichdumpsthe contents
of the first four graphic pages to cassette as a machine code file which can
be reloaded later.

164

Chapter 12 Instant Keyboard Access to Hi-Res Commands

T HFE
FEEM 1.2H CLOMDM HA%
LT L

Drawing with the joystick

Although you can move around the screen with the cursor keys it is
sometimes more convenient to use this joystick routine which s called by J,
as you can then make diagonal moves more easily. The cursor key routine
is replaced by the joystick routine until one of the cursor keys is pressed
again. The joystick is used to control direction rather than absolute posi-
tion here (see earlier). The JOYSTK values for 0 and 1 are read into varia-
bles and a logic test against position limits used to update both X and Y.

22ey JB=JOYSTKC(B): J1= JOYSTPHI VA
=$+C THAR(B4 =28)—(A=Y+
CINCCJ14=28 0= J1=:88)30

After limit tests a replica of the usual cursor routine is used and then a
test made to see if any key is being pressed.

2219 IF Y»YE THEN Y=YE ELSE IF */
<vS THEN Y=YS

2229 IF A»XE THEN #=XE ELSE IF ¥
<AS THEN X=KS

2238 GETCA=1,"-1)5-CA+1,¥Y+13.CU, G
(PUTCA=-1,Y=1)=(A+1, Y41 3, CU. PRESE
T:FOR N=1 TO 18:NEAT:PUTC(A-1,%Y~-1
J=(A+1,¥+1,CU, PSET

Ifanykey is pressed PEEK(337) islessthan 255 and the joystick routine
is left.

2259 IF PEEK(337,4255 THEN 1808

165

‘Advanced Sound and Graphics for the Dragon Computer

If a key is not pressed then the joystick button is tested comparing
PEEK(65280) with 126 and 254. If the button is not pressed a Blank Move
is made but if the button is pressed a MOVE is made.

2260 IF PEEK(65280)<>254 AND PEE
K(652805¢>126 THEN DRAW"BM"+STRS
(Xo+", "+STRSC Y):GOTO 2208 ELSE D
RAW"C"+STRS(C1)+"M"+STREC X)+, "+
STR#CY):GOTO 2200

2270 GOTO 1130

Entering character mode

The final single key command is @ which exits the drawing mode and goes
to an alternative mode in which preformed characters are displayed. D$ is
setto “0’’ so that these characters are initially drawn from left to right (see
later).

2198 POKE 125.8:0%="9":G0T0 28

Character mode
Keycheck and cursor

The scale factor for DRAW (S) is set to four times the cursor increment,
and INKEYS tested..A cursor is formed by GET and PUT as before, but
hereitis a line instead of a box as the Y axis is of zero length. The flashing
cursor is repeated until a key is pressed and if this key is @ the program
goes back to the drawing mode.

IM. ')
. HEHXT M F‘UTI
Y a=C ¥ TN, ¥ 2, DL PSET IF Cs="" T
HEN 29 ELSE IF Ce="2" THEM 1999

The ASCIIvalue of thelastkey pressed is now calculated and used in a
logic test against the arrow keys for cursor movement. A move of one
standard character unit is made for each left and right cursor key
movement, and a move of one and a half character units for each
movement of the up and down keys. This gives the correct spacing between
alphanumeric characters and lines. Once the X and Y limits have been
checked a Blank Move is made to the new position.

166

Chapter 12 Instant Keyboard Access to Hi-Res Commands

E THEM “=KE ELSE IF

+ETRE 0+,
%31 THEHN
*ELSE 28

If the ASCII value of the keyisnotbetween 32 and 90 the program loops
back to20, but ifit isbetweentheselimitsit goes to the subroutine at 25. On
RETURN from this character DRAWing routine the X position is
updated.

Sorting the characters

Line 25 is a key line as it sorts keys between 32 and 90 by an ON GOSUB
according to the ASCII codes. Each of these subroutines DRAWs a dif-
ferent character and the program is arranged so that the line numbers of
these subroutines correspond to the ASCII codes of the key pressed. For
example pressing A leads to line 65. The only key with a code between 32
and 90 which does not have a subroutine is @ (code 64) as this key has
already been used to return to the drawing mode.

'+I|F'||+[:|$+u
WESUB2

Character subroutines

You can DRAW any type of character you like in the subroutines, the only
proviso being that you must make sure that you finally make a Blank Move
to a standard point in the next character position. The examples given
(Table 12.1) include all the upper case letters and the numerals, together
with some other special characters. The characters are constructed on a 5
by 6 grid (Figure 12.2). If you want to define even more characters you can
include lower case and duplicate line 25 as 26 with higher ASCII codes. The
great advantage of using DRAW to produce characters is that these can be
of any size and shape and be scaled, coloured and angled at will. Of par-
ticular interest are the accent routines which replace the normal characters
onthe i, $, % and & keys,

167

Advanced Sound and Graphics for the Dragon Computer

25 DRAW"EM-7.-FEZBM+4,+18" RETUR
22 DEAW"BM-4, -FPHIZEM+7. +16" : RETUR
DRAW"BM-£ . -FEZF2E11+4, +7" RETU

and the copyright sign which replaces the !

CRAW"BM+1 ., +3RZEV4HL2CDIFBM+2,
-ZLHEREM+4, +4" - RETURH

Figure 12.2 Letter A formed on 6 X5 grid

The greater than (>) sign has been replaced by a larger design which
should be reasonably familiar to Dragon users (Figure 12.3). As this is
larger than the rest of the characters the X position is moved along further
than usual.

52 DRAW"BM+2. +@R1TEM--4, +BHLES
GFHZLZGH4BM+E, +3USEM+ 2, +EE4"
40581, 50 RETURH

Figure 12.3 An alternative character

el

Colour (C1), scale (S) and angle (D)

If you look again at the start of line 25 you will see that each character is
DRAWn in the current foreground colour, at the current scale and angle.
To change the foreground colour (C1) or scale (S) you must jump back to
drawing mode and you may remember that D$ was set to ‘0”’ before

168

Chapter 12 Instant Keyboard Access to Hi-Res Commands

entering character mode, so that DRAWing proceeds from left to right.
Four different scales are available and these produce different sizes of let-
ters (Figure 12.4). Notice that line 32 sets the colour to C2 so that it
DRAWSs in background to produce both a space and a delete character
feature.

Figure 12.4 Different letter sizes

s

Theangle can be updated in character mode by a two-stage process. First
a check is added for the ENTER key (CHR$(13)). If INKEYS$ is not
ENTER then line 24 is excluded. If ENTER is pressed INKEY$ is checked
again and a warning SOUND made until another key is pressed. The Oto 3
keys can now be used to change the angle of DRAWing. Invalid keys are
rejected by looking at the VAL.

IF [e=""
3 THEM [

=" GO0TD 24:ELSE 28

This feature is extremely useful in labelling diagrams as text can be writ-
ten in all four directions (Figure 12.5).

Figure 12.5 Change of angle

HORMAL
a o
5 =
"z

03143nNI

Resurrection

If you are unfortunate enough to try the impossible and hence crash the
program typlng SCREEN 1,SN:GOTO 1000 will usually put you back
where you were before your last move.

169

Advanced Sound and Graphics for the Dragon Computer

Written prompts

Now that you have the facility to produce text on the hi-res screen you
can easily change the ‘block’ prompts described earlier to actual written
messages. The message to be given is defined as M$ and then this is
sliced down one character at a time and sent through the normal cha-
racter drawing routine. We will put the slicing routine at 6000 and set
D$=*0" to ensure that the angle command always gives normal text.

L="g" :
=M1
'.

As a demonstration we will modify the PAINT routine. The easiest
way to recreate the screen after the prompts is to GET the whole of the
top of the screen into array WM.

2810 GETC 8, 85~ 255,18@7. WM, 15

Now we define the first message as M$, make a Blank Move to the
position you wish to write from, and go to the slicing subroutine.

28208 M$="COLOR 17" :DRAW "BM1©,1@
":GOSUB ©oB9

When the value has been entered as before the top is PUT back.
28508 PUT(@,8)~(25S, 18 1 WM, PSET

The other messages are dealt with in the same way, except that there is
no need to GET into WM each time so certain lines can be deleted.

870 " delete

880 M$="COLOR 27":DRAW "BMSG, 10
SUB €000

2989 PUT(8,085-{255.,187, WM, PSET

2
2

2919 (delete

2928 M$="PAINT Y H7":DRAW "BMi188
, 18" : GUsIUB £vovo

2940 IF PA%$<:"Y" THEW PUT{ @, 8-
255,185, WM, PSET: GOTU 10089

2968 PUT(8,85-(255.181, WM, PSET

Any other text message can be written onto the screen in the same
way.

170

Chapter 12 Instant Keyboard Access to Hi-Res Commands

LIST OF SINGLE KEY COMMANDS

Key Action
DRAWING MODE move cursor
cursor kews draw with cursor
shifted cursor keys cursor increment 1
1 cursor increment 2
2 cursor increment 4
3 cursor increment 8
4 leave mark
sPacebar LINE from mark
L Rubout LINE from mark
R LINE no~urdate from mark
H Box
B Filled box
F CIRCLE

c ellirse

171

Advanced Sound and Graphics for the Dragon Computer

E GET

G backup coPy

clear

4 PUT PSET

I PUT PRESET

b PUT AND

0 PUT OR

T PUT HOT

K kill ¢{clear screen’

(must be held for 5 seconds)

W change colours
{first number iz fore9reund,

second number is back9round?

] PRINT
(Press twice, then enter Paint colour,
border colour, and ’Y' if correct’
A arc

172

Chapter 12 Instant Keyboard Access to Hi-Res Commands
(first number it start, second number
iz end, Press ‘A’ again to continue

this arc)

S CSAVE/CLORD

J JOYSTK

(Presz a key to leave Joystick mode>

® enter character mode

CHARACTER MODE

cursor kevs move cursor

enter change angle

(Press 8-3 to select angle’

Q@ enter drawing mode

any other key draw character

To recover from a crash type:

SCREEN 1,SN:GOTO 1000

173

Advanced Sound and Graphics for the Dragon Computer

Table 12.1
SAMPLE CHARACTERS

2z HEEEH+4 +4"
=4 DREAW"EM+3. ~&[
*RETURH

25 DRAW'EM-T, ~FEZEM+4, +18" - RETUR

EM+;;+UUEM+4J+o"

& DRAW"BM-4, ~FHZEM+T, +18" :RETLIR
7 DRAW"EM-2. -TEZFZEM+4, +7 - RETU

6;+1DhEH+.,~w"-PETHPN
» ETURH

2 LRAK"EM
RALE
1 DRAWEN+2, +BHUSEEI1+3, +6" RETU

DRAVEM+1, +EEU4HEM+S. 42" - RETU

DRAW"EM+3, —1E4EM+3, +4HIEM+ S, +
‘RETURH

43 DRAVEM+E, ~2RILZVZ0IEM+S, +1"
bETUPH

44 DRAW"EM-1.+@0DCEM+4, 2" : RETURM
45 DREAW'EM+3, —3R4EM+4., +32" :RETURM
& DRAW"EM-1.,+AUEM+4. +1" : RETURN

DREAWENM+3, -1E4EBM+4, +5": RETURN
FAV"EM+E, -1 FRZEUSHLZGDGEM+HS

3 DRAKWEI+1 . +BUSGEM+E, +5" - FETUR

S8 DRAW"EM+4, +aL4UERZEUZHLEZGEM+2

445" :RETURM

51 DRAW"EFHD, — 1IFRZEUHLZRZEUHLZGE

M+#,+5"'RETUPH

52 DRAW"EM+Z, +E0E05
?H

ZR4EM+4, +2" RE

5% DRAW"EM+E, -1 FRZEUZHL3UZR4EN+4
2 HEY RETURM

54 LRAK"EBM+E, - ZERZFLGLEZHUSERZFEM
+4,+5" : FETURHM

55 DRAW"BM+Z. +BUZEZUZLIEM+E, +&"
FETURM

174

Chapter 12 Instant Keyboard Access to Hi-Res Commands

S DRAW"BM+ 1, +BRZEUHLZHUERZFOGLE
GLFEM+7 . +9" - RETURH

57 DRAW"EM+E . -1 FRZEU4HLZG0FR2EM+
4. +32" RETURM

52 DRAW'BM+G, —SDEM+E. +20EM+4, +1"
ETURN

59 DRAW"BM+E, —SDEM+E, +20GEM+5. +8
" RETURH

ek RETURH

=1 DRAW"EM+E, ~2R4EN 1+, ~2L4BM+2 . +
4" RETURH

22 DRAW'EM+Z. +9R1TEM-4. +OHLECEZR
GFHZLZGHAEM+E, +ZUTEM+Z, +8E4" e
‘RETURM

3 DRAW"EBM+2, +3LEM+E, ~1UREUHLGEM
+7 . +5" - RETURM

B85 DRAW"JSERZFOESUZLIBM+E .,
LIF

S5 DRAW " DER2FOGF LR ZER
‘RETURH

7 DREAW"EM+1 . +9HUIERZFHLZG04FRE]
er+d . +1" RETURH

22 DRAW"JER2ZFO4GLZEM+2, +8" - RETUR

2" RET

ZEM+DL 3

H

29 DRAL RALHIZRILAIZRIEM 3, +E" R
ETURM

79 DRAW"UZR4LIUZRIEN+S, +2" RETUR
H

71 DRAW'EM+L, +BRZEULROGLEZHUSEREF
EM+4. +5" :RETIJ
TE DRAW"UELZRAVZLEEM+ . +3" : RETUR

H

72 DRAW'EM+], +ORZLUELEZEM+4 . +£"
FETIJRH

T4 DREAW"EBM+HEL ~1IFRZEVSEM+4, +£" : RE
TIRM

TS DRAW"UEEM+E. +ZREZGZF 2EM+4, +8"
(RETURH
-RRN“F4L4UrEH+F i
[k ;

[F

[PHN"EH+1 +UP;
" RETURM
CREAVJERZFOGLZEM+2, +2" : RETLREMN
CRAW"EM+1 ., +0RZEJ4HLZGD4FEM+1 .

PETUPH

DO e R Bt
AR R X e e 1

175

Advanced Sound and Graphics for the Dragon Computer

~2F2EM+4, +8" : RETURM

22 DRAW"UERZFDGLERFIEMN+4, +6" RET
URH

232 DRAW"BM+8, -~ 1FRZEH4ERZFEM+4. +5
ETURN

24 DRAW"EM+2, +BUELZR4EM+4, +€" : RE
TURH

25 DRAW"EM+3, -cDSFRZEUSEM+4., +2"
RETURN

26 DRAW"EM+Q, ~cDIFZEZUSEM+S, +E"
RETURM

27 DRAW"EM+8, ~cDEESZFZUCEM+4, +2" ¢
RETURH

28 DRAW'UE4UENM+0, +cUH4UEM+2, +2*
RETURH

£3 DRAMMEM+Z. +OU4HIF ZEZEM+4, +€"
RETURM

99 DRAW"R4LIVESULIEN+2, +£" : RETUR
H

176

CHAPTER 13
GETting and PUTting Hi-Res Characters

Although the DRAW routines given above can be incorporated into any
program they are somewhat slow in operation and you can quite easily
‘beat’ them if you type quickly. However, once you have drawn them on
the screen you can save them and deal with them much faster later with
GET and PUT.

Transferring characters between programs

Once you have created your characters it is obviously useful to be able to
transfer these between programs, so that you do not have to retype them,
but can build up a whole library of alternative sets instead. It is possible to
define each character as a real string by changing each line to:

instead of

....DRAW ¢ . etc
and then to save all these as an ASCII file on tape.

Saving characters as machine code

However it is actually much simpler to draw them across the top of the
screen and then save this screen area as a machine code dump on tape. As
an example we will set out the example letters and numbers which we
defined earlier at the top of the screen and then save them. The screen is
cleared and the colour set reversed to give black characters on a light
background as these are easier to read. (If you want to save them as white
on black just use PCLS instead of COLOR 0,1:PCLS1). We can set up the
screen position by a Blank Move and then jump into the normal character
drawing subroutineto lay out the letters and numbers in a suitable format.

lpooo PMODE 4,1:SCREEN 1,9:COLOR
B.1:PCLS1:%=1:FOR C=48 TO S57:LRA
W'BM"+STREC X +", 7" : GOSUB 25: X=X+
7:NEXT C

177

Advanced Sound and Graphics for the Dragon Computer

106010 FOR C=65 TO 99:DLRAW"BM"+STR
$(X)+",7" :GOSUB 25:X=x+7:NEXT C
10020 CSRVEM "CHARS", 1536.1722,22
4

The start position for the first character is coordinates 1,7, and each
subsequent character is seven pixels to the right of this. C valuesof 48 to 57
define the numbers and 65 to 90 the letters.

In PMODE 4 there are 256/8 = 32 bytes on each line and we have only
used the top seven lines so we need to CSAVEM 224 bytes to save all 36
characters. Asthat works out atless than sevenbytes per character youcan
see that it is a very economical method, and you will also notice that
machine code saves quickly.

Loading the characters and setting the screen

Characters which have been dumped on tape in machine code by CSAVEM
as above can easily be recovered by CLOADM and used to produce a
superior text display. For optimum visibility use PMODE 4 and reverse the
COLOR to give black letters on a green (or buff) background.

13 PMOCE 4.1:3CREEM1.B:FCLS1:COL
OFB, 1 CLOADM

Thecharacters will reappear in a single lineacross thetop of the screen
(Figure 13.1).

Figure 13.1 Reloaded characters
012

245EVEIABCOERGHT JLLMHOFGRZTLLIL

Dimensioning the arrays

Before you GET all the characters you must DIM suitable arrays. Unfor-
tunately that normally means a lot of repetitive typing as you cannot alter
line numbers on the Dragon or switch the name of an array in GET and
PUT. (In fact we have found a devious way of getting around that prob-
lem, but as it is not very easy to understand we haveleftit until later! If you
want to become really good with graphics make sure you understand how
this method works before trying the alternative.) The size of each array is
only ONE element as the 5 by 7 matrix needs only 35 bits. Each array is
named as C plus the actual characterand in addition a blank array (BL) is
also DIMensioned.

178

Chapter 13 GETting and PUTting Hi-Res Characters

2eDIMC3C 10

GETting the characters

Appropriate variables must now be set according to the size and spacing of
the characters to be picked up. X and Y set the start coordinates, S is the
step between characters on the screen, and W and H the actual Width and
Height of the characters.

43 Hm1c=g: =T =5 H=T

Allof the upper-case characters andthe numbers can be fitted onto the
top screen line so now you just need to GET each character, stepping the X
coordinate by S each time.

130 GETE Mt = Sl t4H 0 D, 5 e

118 GETOM Y bl e 2 0L, G

28 GETC L =0 Y HH DL CEL 5 ¥
2 GETOE L iU ER LA L D35 EEE

48 GETOH Y 0= bl Y 0 04 G

58 GETOH. Y i=C 4k Y+H L 05, G0 ¥
S8 GETO L =0 b Y HH DL DB, 5 =

VB OGETOE L o= Y HH DL LT L G

B GETE .Y =i S, PHH B 02, G Y=

3 GETC Y o Ctbl YHH DL 0515

Pt 68 = 00 = (0 = (0 e U0 O = (0 (0 = ()

B8 GET s =0 b r+H 3, CRL G

179

Advanced Sound and Graphics for the Dragorn Computer

18 GETCH, ' o=0A+bL, Y +H D, OB, G

20 GETC W, o= bl W 0L 0L G

L NN N

GETC A 0= M4blu 04H 5, C0u G

48 GETC A, i-0 kb, Y+H D, CEL G

S8 GETC A, b= bl YHH 0 CF LGk

GET ¥ ' =0 M4bL WHH 3, 5L G W=

o]
o

GETOCH, W =0+l Y HH o CHL G

]
o

GETC R, o Y +H DL ST G

b
o

GETE W, 5 o= A+ W YHH L T G

0
&

GETC W, =0 AL Y +H L CEL G

GETE M i dtb), P+H 9L OLL G

—_
<

GETC M. 0= A +b, YHH 3, CHL G

o
o

GETC A, =l e +H o, CHL G

b
[

CHAbL YHH D

=
&

GET

GETCH Y 3=0 40, Y +H D, CF L G M=

i}
&

e LG s PPN WY PR

o
&
[}
m
=

;2
S
2
S
¢
S
Z
]
2
5
2
z
298
1
]
S
2
et
I
S
=
s
Z
2K
S
7

CAABLHH D TR G

=
&

AW YR LT, G

18 GETO R =0 s, Y HH 0L 0 5

2
S
£
S
433 GETCH, Y »
4
5
4

208 GETOH, W a=0E+b Y HH D TG 5

Chapter 13 GETting and PUTting Hi-Res Characters

GETY

A TP S DRI

o
&

§ g U0

48 GETC W v D=Ca+ W r+H 0, 0

GETO .

AN D2 G

Setting the screen format

Once all the characters are safely in their arrays the screen can be cleared,
and new variablesset up to control the screen format. X and Y are the start
coordinates, S is the step along the X axis, T the step along the Y axis, and
XS, YS, XE and YE the limit coordinates values for X and Y axes.
Although the actual size of the characters is fixed S controls the amount of
space between characters on the X axis, and hence the number of cha-
racters per line. T controls the amount of space between lines of characters,
and hence the number of lines which can be fitted on the screen. If only part
of thescreen is to be written on then the values of XS, YS, XE and YE must
be modified. The combination of values given produces a matrix of 42 by
24 characters (a total of 1008 (almost double the number on the normal
Dragon text screen). Although it takes several seconds to fill the arrays
initially these are retained as long as you do not use RUN. If you crash the
program make sure that you restart it by GOTO.

PLLS

<=
=1

2t
E=13

—-&

Cursor and keycheck

K$ is read from INKEY$ and a flashing cursor produced, in this case by a
double PUT of the BLank array with NOT to invert the screen twice. The
first PUT, NOT reverses the state of all points in the area, and the second
PUT, NOT reverses tliem again so they are back where they started. When
akey is pressed the ASCII value is taken and if this falls above or below the
code for the present characters the program jumps on to line 1500.

519 E$=IHKEYS PUTC X, Wbl M
BL, NUT PUTCK, ' 9=
"' THEW 518 ELSE
¥ OFR FK>31 THEW 1599

The other keys are sorted by an ON GOSUB related to their codes.Six of
the missing characters with codes between those of the numbers and
upper-case letters jump back to the INKEY$ check, but @ goes to another
routine at 1610.

181

Advanced Sound and Graphics for the Dragon Computer

528 47 GOSUE 1999, 1819, 1929
)12133;1214%12!.42! 1958, 19713, 1959, 1
B99,519.,519,519,518, 519,518, 1618
,1199,1119,1129, 11329, 1148, 1158, 1
168,1179, 118%1195 ldldtl 1219, 122
B,1228, 1: B.1289,
1299, 129 1248, 132
=1%]

PUTting the characters

There is a corresponding PUT, PSET subroutine for each character and
the program then RETURNS. You can save yourself some typing if you
CSAVE the program so far, delete everything except the GET lines, and
then append your program back on itself. The procedure for appending is
first to PEEK at locations 27 and 28 and then POKE location 25 with the
numberin 27 and location 26 with two less than the number in 28. This sets
the ‘start of BASIC program’ pointer above the end of the program left in
memory,andyou cansafely CLOAD yourother COPY ontopofthis. You
now RENUM it above the originallines and if you then POKE 25,30 and
POKE 26,1 you will reset the start pointer back where it was and find both
sets of lines form one program. You can now edit the copies of the GET
lines to convert them into PUT lines.

1998 PUTC: Y =0 Ml Y+H 5, 08, PSET

RETURM
1918 PUTCY, ¢ o= b4l Y +H 5, 1 PSET:
RETUURM
1828 PUTC R, o= EHbl ¢4H), 02, PSET
RETURHM
1828 PUTC M, Y =0 M+l +H 5, 03, PSET
RETURNM
1948 PUTC M, Y =0 4, Y+H 0, 04, PSET -
RETURM
1858 PUTC ¥, % o=C b, (4H 5, 05, PSET
RETURN
1868 PUTCN, W =0 M4+l W4H), 126, PSET :
RETURM
1878 PUTC K, Y o= Kb, 4H), 07, PSET
RETURHM
1888 PLT M, ¢ o= M+W, Y4H 5, 08, PSET
RETURM

182

Chapter 13 GETting and PUTting Hi-Res Characters

1838 PUT:
FETURH

1188 PUTO A, o=t Y+ H 0, CRLPSET

FETURH
1118 PUTOE
RETURH
1128 PUTC:
FETURH

=

1128 PUTC L =04 W +H D 2D PSET

RETURH

1158 PUTC .Y
FETUR:H
1168 PUT !
FETURH
1178 PUT
RETURHM
1128 PUTOE, s
RETLIRH

1158 PUTOH, Y
RETURH

1208 PUTOS Y -
RETURH

1218 PUTCH, Y 2=
RETURH

1228 PUTCE, 0 =0 Wbl v +H 2, TR PSET

RETURH
12368 PUTCH, Y
RETLIFH

1245 FUTCH
FETURH
1256 FUT:
PETUFH
565 PUTE
RETORI
1278 FUT:
FETURH

1288 PUTOM,Y =0 w4kl W +H D D5, PSET

RETURH

1298 PUTOE Y a=0E+ W, Y+H 3 DT PSET -

RETURH
1288 PUT:
FETURH

X

A=A Y DL T PSET

AL Y HH B 9L PEET

b YHH D B, PEET

CEAML YR L DL PEET

L THH Y CELPEET
Vbl YHH L CF L PSET
blotfH 0L DG PSET ¢
bl t4H 0 CHL PSET
Atbl+H D, CLLPSET
L YHH DL T PEET ¢
s T HH B CE, PSET -
A PHH DL CL L PSET ¢

bl T HH DL CHL PSET
ALY AH DL PEET

bl P 4H 9, CPUPSET
O HH 3 TR PSET
- bl Y HH DL CR L PEET

183

Advanced Sound and Graphics for the Dragon Computer

13168 PUTCH 7 5~ R+, +H 2. 00, PSET
RETURM

1326 PUTCH, v 3
R

W Y HH DL CHLPSET

AL Y HH DL DL PEET

1248 PUTC W, Y 0= A+W. v4+H D CY L PSET
FETURHM
1258 FUTE W, 0~ bl P4H 5, 020 PSET
FETURH

When you RUN this program you will no doubt be impressed by the
speed of GET and PUT which appear to operate instantaneously, and
certainly faster than you can type. This speed is the main advantage of this
method of character generation, but of course this must be set against the
impossibility of scaling and colouring the characters, or of changing their
angle on the screen. It is chiefly a useful method of getting a reasonable
amount of text on the screen at one time. Do not be tempted to save some
typing by using GET without graphic detail and PUT without action as we
have found that this theoretically desirable combination does not work
very effectively in practice. There should be a speed advantage over the
method described here, but in practice we have found that'it actuallytends
to crash with mysterious FC ERRORs if you type fast.

Once a character has been PUT the X position is stepped on. If the limit
ofthe X axis has been reached (X> XE) then the X coordinate is reset to the
start position but the Y coordinate is moved down to the next line. If the
end of the screen is reached suitable action must be taken.

THEN H=p e Y=Y+T

558 GOTO 519
2808 S5TOP

Moving on

The spacebar (code 32) produces a blank move to the right, and this line
also PUTs the BLank array back with PRESET at this point. This has the
effect of erasing the screen at the current position so it is also used for
deletion. Note that this array was never filled so that PRESET rather than
PSET is appropriate.

1588 IF k=32 THEN PUT" -0
‘Y+H 3, BL, FRESET : SO0TO 518

184

Chapter 13 GETting and PUTting Hi-Res Characters

The arrow keys can also be used to move around the screen in all four
directions.
1518
1528
1531
5]
1548 IF k=19 THEM 'W="4+T:GOTO 15&
5]

1558 COTD 519

1568 IF . THEM =
1579 IF ¥:¥E THEM =Y4T
1528 IF S THEM '

1598 IF V3VE THEM v=v-T

leps GOTO 519

Another case

If you want true lower case you will have to load more characters and
duplicate all the GETs and PUTs, but an alternative inverse case can be
produced very easily (Figure 13.2). If you want to move into inverse cha-
racters just press @ which leads to line 1610 which toggles between the two
cases by setting a flag (FL).

1618 IF FL=1 THEMW FL=B:RETURN EL
SE FL=1:RETURH

Figure 13.2 42 X 24 display

Another line is now slipped in which PUTs the BLank array over the
current character with NOT, thus inverting all the screen points.

539 IF FL=1 THEM PUTCM. %Y a=Cmtbd,
+H+1 5 BL.HOT

185

Advanced Sound and Graphics for the Dragon Computer

More or less characters

The 42 by 24 character display described is the largest that can be comforta-
bly dealt with (Figure 13.2). The space between characters can be reduced
by droppingS to 5, which gives 51 characters per line (1224 per screen) but
this is pushing things very close to the limit (Figure 13.3). Increasing S to 7
reduces the number of characters per line to 36 (Figure 13.4) and if S is 8
youareback with the usual 32 characters per line of the Dragon text screen,
although as there are still 24 lines you have 768 characters on the screen
ratherthan 512, There must obviously be a compromise between legibility
and quantity and with this technique you can make your choice according
to external factors.

Figure 13.3 51 x 24 display

O Z2ASETSHIN 224567230 24557500 224587 RS0 224567890

If‘l l1 0F FIFTVHE
0 _THE SLPEDM

186

CHAPTER 14
Working on a Grid

Although it is possible to build up freehand designs on the screen some
form of grid system gives a very useful guide when you want to make sure
that your figure fits a particular format. This is very important when you
want to define character sets or frames for animation. The grid system
described here is a much more powerful derivative of the paper ‘plotting
chart’ idea that makes rubbers and Tippex redundant.

Making your choice
Before we can build up a grid on the screen we must decide what PMODE
and colours to use, and what size, shape and scale the grid will be.

20 CLS:PRINT"PMODE"; : INPUT PM:PR
INT"COLOR SET"; :INPUT CS:PRINT"F
OREGROUHMD" ; INPUT @1 : PRINT"BRACKRO
UND"; INPUT 22:CLS:PRINT"GRID WID
TH"; : INPUT MW:PRINT"GRID HEIGHT";
+INPUT H:PRINT"SCALE": : INPUT S¥

Forming the grid
Now to set up the screen and define the start position (XS, YS) of the grid.

20 PMODE PM, 1:SCREEM 1,CS:PCLS @
2
49 ¥S=10:YS=50:SY=8¥

XS=10,YS=50 starts the grid about one quarter of the waydownthe
left-hand side of the screen, slightlyawayfromtheleftedge. Foreachgrid
element to be square thescale factor forthe Y axis(SY) must bethesame as
thescale factor for the X axis(XS)which you entered.

The end coordinates for the grid (XE,YE) are calculated by multiplying
the width of the grid requested (W) by the X axis scale factor (SX), and the
height of the grid requested (H) by the Y axis scale factor (SY). A check
must then be made to ensure that the calculated area will fit on the screen.

187

‘Advanced Sound and Graphics for the Dragon Computer

If this check fails the program RUNs again. The current screen position
(XP,YP)is set to the grid start (XS,YS).

+CSHEW E"’b+(‘-‘(H) P=

+IF YEX139 OF YE»128 THE

58 ¥
#S Y
H RUN

The specified limit of 190 for XE leaves a clear area to the right of the
screen. For test purposes choose PMODE 4,1, foreground 1, background
0, width 10, height 10, scale 10.

The actual grid can now be drawn by a series of LINEs between start and
end, spaced the scale factor apart.

58 COLOR (1,02 H=VS: FOR M=XS TO

ZE STEP S¥:LIMECM.H - M, M+ YE-
¥S) 3, PSET : HEXT M: M=xS:FOR H=YS
TO YWE STEP S':LIMECM, M)~ M+ HE
28 0 Mo PSET:HEXT M

Flashing cursor

You need a cursor to indicate your position in the array, and as this is
formed by PUTting a blank array (B)this must be dimensioned first.

19 DIM BU1@3)

The actual flashing cursor is formed by PUTting the blank array at the
current screen position twice with NOT. The first NOT inverts that sector
of the grid and the second inverts it again to produce the original display.

83 FL=5:FOR R=1 TO 2:PUTY /FU‘.’F"J—
(AP+SX,YP+SY 0, B, MOT :FOR T=1 TO R
“FL:MEXT T:MEXT R:IF PEEKY 2327 =2
55 THEMW 28 ELSE R=PEEK: 12

Aslong asno key is pressed (PEEK(337) = 255) this sequence repeats. To
make the actual state of the grid sector under the cursor easier to see there is
a timing loop which is related to whether this is the first (R=1) or second
(R =2)NOT. The rate of flashing is also linked to a variable (FL) which has
profound effects as the time delay calculation is exponential (RFL). A
value of 5 for FL produces a reasonable effect. When a key is pressed the
value of PEEK(135) is read into A.

188

Chapter 14 Working on a Grid

Moving round the grid

The cursor keys control movement, and limits are tested so that it is not
possible to leave the grid.

168 AI=((A=8 >~ A=9))

178 YI=C(A=94)=(A=1@ 1

188 AP=XP+(AI¥SH) : YP=YP+(YI4SY)
1959 {E-S¥ THEM XP=YE-SX:GUO
TO 88 ELSE IF ®P<XS THEM ¥P=XS'G
0TO 8o

298 IF YP>YE-SY THEM YP=YP-S¥:050
TO 88 ELSE IF YP<¥S THEM YP=YS:0
oToga

218 GOTO &8

Notethat thesize of the move is related to the scale factors (SX and SY).

Filling the grid and changing your mind
To fill in sectors of the grid we use another array (W) whichis originally
filled with the contents of the screen at the start coordinates.

19 DIM W(18):DIM BC1@2
78 GETCAS,YSr-(XS+S%, YS+SY 1, bL G
POKE 135.8

(The POKE 135,0at the end is to cancel autorepeat when a redraw of the
grid is called later.)

The key code for filling (32) is the spacebar, which was.chosenasthisis
the most frequent request.

189 IF A=32 THEM PUTC{XP, YP)-{¥P+
S, YP+SY >, W,PRESET : GOTO S8

As W is PUT back PRESET it inverts the display. The program then
loops back tothe cursor routine.

To remove a filled block from the grid the same array is PUT, PSET if
“X” is pressed.

118 IF A=88 THEM PUTCXP,"P =i %P+
S, P+SY 1. W.PSET: GOTD 29

Making a ‘real’ copy

The most valuable applications of this program are creation of characters
and animation frames, so we need to be able to transfer our ideas from the
grid to theactual screen. This can be done by PSET and PRESET of appro-

189

‘Advanced Sound and Graphics for the Dragon Computer

priate points and a miniature copy produced to the right of the grid from
coordinates CX,CY.

40 #S=10:YS=50:SY=SX:FL=5:CX=200

:CY=90@: XC=CX: YC=CY

The current position is XC,YC and this is only updated if the move was
within the grid asline 210 is only reached after valid moves.

210 AC=AC+AL : YC="C+¥1: GOTO 20

PSET and PRESET of XC,Y C are added to the previous fill and erase
lines.

160 IF A=32 THEN PUTY AP.YP)~(=P+
S¥, YP+SY 5, W, PRESET : PSET(XC.YCy: G
0TO 2.

118 IF A=88 THEN PUT{ XP, VP)—{ xP+
S¥,YP+SY), W,PSET: PRESET(XC. YC 3+
0TO 20

If youRUN this again youwillseethat all your actions onthe grid are
now mirrored in a smaller version to the right of the screen.

Storing the copies

‘When you have built up a satisfactory copy you can store it at the top of the
screen by pressing “@°’. This GETs the copy at the right of the screen into
array CH and PUTs this back in the top quarter.

18 DIM W(185:DIM BC1@):DIM CHO 5o
a)

48 %S=19:'YS=50:S¥=5x:FL=5:Cx=200
s : % :C

{5}
N =+
W,CY4+HJ,CH,G:PUTCY.C2 1+UW.C2
+H3, CH, PSET: C1=C1+4M: GOTU €0

The initial PUT coordinates are predefined as C1, C2 and the X axis
position (C1) is moved across by the number of units in the width of the
grid (W) after each PUT.

As this routine returns to line 60 it redraws the grid but does not clear it.
This is very useful if you want to make a series of frames for animation (see
later). When the grid is redrawn the gaps between blocks disappear so that
the status is obvious.

190

Chapter 14 Working on a Grid

Starting again
Should you decide that you do not like the contents of your grid, and want
to wipe it clean, pressing CLEAR will give a partial screen clearance.

138 IF A=12 THEN FOR P=2 TO 4:PH
ODE ©,P:PCLS Q2:NEXT P:PMODE PM,
1:GOTO €o

Onlypages 2 to 4 are cleared as the PCLS is done in PMODE 0. This
command is also used if you want to clear a grid after storing a copy at the
top of the screen. As these copies are on page 1 they are not affected by the
CLEAR routine. Should you reaily want to destroy the stored copies press
3 to clear page I.

149 IF A=5S1 THEW PMODE®. 1:PCLS @
2:PMODE 4,1:POKE 135,8:G0T0 €8

If you decide that eventhe grid sizeis wrongthen press ‘I’ toRUNthe
program again.

98 IF A=45 THEN RUN

Inversion

A partial inversion of the screen in both grid and copy areas is possible. The
copy area has the CH array PUT, NOT over it, whilst the grid is reversed by
repeatedly PUTting array W, NOT, whilst moving down the appropriate
screen area. If you repeat the action in this way you can use a smaller array
than otherwise necessary.

158 IF R=73 THEN FOR N=YS-SY TUO

YE+SY i PUT(XS-SX, NJ—CXE+SX, NI WL N
OT:NEXT N:PUT (CX,CY »~(CX+SX.C¥v+
SY,CH, NOT:GOTO 8@

This allows you toview and store an inverted copybutthescreen should
be cleared before continuing.

Saving
‘When you have formed all the characters or frames you need you can
CSAVEM the screen as described previously.

191

Advanced Sound and Graphics for the Dragon Computer

Applications

Any kind of figure can be created on this system, and the grid may be small
or large. In fact this routine has been used to provide material for several
other chapters. Text characters are easily defined, for example Figure 14.1
showsaset oftruelowercase instorewith a pound sign about to be added.
A Dragon logo is formed in Figure 14.2, and a tractor in Figure 14.3. We
will leave you to add the rest of the farm implements. Production for a
series of frames for animation is described elsewhere.

Figure 14.1 Generation of lower case and special characters

acdetfanidklnmoPdrstuvnxyz

F'igure 14.2 Dragon logo

2
h

J

=

|
T

TLIT

T 1|
InNEE|
TITTTT ‘Flr{]]'_’!;

192

Figure 14.3 Tractor

Chapter 14

TITTT

-

Working on a Grid

193

CHAPTER 15
Animation

Runner

The next step on from simply moving things around the screen is to
animate a design — that is move parts of it to give the impression that it is
alive. Once again we’ll look at a SET point approach and consider pro-
ducing theeffect of a figure running. First we designed two alternative fig-
ures, the first showing a stationary figure facing forwards, and the second
a running figure facing to the right (Figure 15.1).

Figure 15.1 Runner

The coordinates are in DATA statements and READ into arrays as
before, but in this case there are really two alternative sets of coordinates.
The first 35 points (in line 5020) make up one figure (stationary), and
points 36 to 59 (in line 5030) the other (running). Only two arrays need be
usedaswecantakeany points fromanarray atanytimeand donothaveto
start from the beginning of the DATA each time. Separate subroutines to
SET each figure are in lines 1000 and 2000.

If you trace the order of the DATA points and then watch this program
in operation you will see that the simple animation effect is achieved
because the leg points are SET relatively slowly and in a particular

195

Advanced Sound and Graphics for the Dragon Computer

sequence so that one leg appears before the other. There is no point in con-
verting these SET points to the equivalent CHRS as the increase in speed
would mask the effect of movement here.

The sequence of operation is as follows. The title is printed and if no key
is pressed then the first figure is displayed by the subroutine at 1000. If a
key is pressed the program drops through to 120 which updates the screen
offset (XO), clears the old picture, goes to the subroutine to SET the
second figure (2000), clears to screen again, and reprints the title.

1@ GOSUB Seee

20 CLSO

30 #%0=2:Y0=0:C=2

180 PRINT 12256, "RUNNER"

110 IF PEEK(337)=255 THEW GOSUB

1600:G0TO 110

120 X0=X0+1:CLSE:GOSUB 2000:CLED
'GOTO 1008

1600 FOR N=1 TO 35:SETIXUNI+X0,Y
CNO+¢0, Co:NEXT N:RETURN

2000 FOR M=36 TO S59:SET(X(N)+X@.
"YCND+HY0, C O NEXT N:SOUMDL, 1:RETUR
N

5000 DIM X(S9) ' S59)

50108 FOR N=1 TO S59:READ (N YN
2:NEXT N:RETURN

Sez2e DATA 1.,1,2,1.3,1,1,2,2,2,3.
2,2,3,0,4,1,4,2,4,3.4,4,4,0,5,1,
5,2,5,3,5,4,5,08.6,1,6,2,6,3,6.4,
61,7,2,7,3,7,1,8,3,8,1,9,3,9,1,
10,3,10,0,11,1,11.3,11,4,11

Se3e DATA 1.1,1,2.2,1,2,2,1,3,1.,
4,1,5,1,6,1,7,2,4,2,5,2,6,2,7,3,
5,1,8,2,8,3,8,3.9.3,10,4,10,1,9,

8,9,-1,9,-1,18

A nalternative to CLSOist o use a single 192 character string (BL$) to
erase only the top of the screen (PRINT positions 0 to 191).

40 BLE=STRINGS< 192,128)

120 X0=X0+1:PRINT 120,BL%; :GOSUB
2000:PRINT @@,BL%;:GOTO 110
Sprinter

The runner described above appeared to move because of the slowness of
SET and RESET and it is also possible to use the techniques described for

196

Chapter 15 Animation

these with PSET and PRESET in hi-res. However you can produce much
smoother animation in hi-res if you use GET and PUT, although of course
you still need to make the pictures to GET and PUT first. Figures 15.2 and
15.3 show two ‘frames’ of the movement of a sprinter which can be formed
by PSETting the coordinates given in the DATA statements.

13 DATH 4.9.5.8.5.8.7,8.4,1,5,1,
5,1,7,1,4,2,5,2,6,2,7,2.4,2,5,3,
5,32,7,3,4,4,5,4,5,4,7,4,5,5,6.3,
4,5,5,6,6,6,7.6,4,7,5.,7,7.7,32.8,
4,8,7,8,2,9,3,9,4,9,7,9,2,19.,4,1
B, 7.19,8,19,9,19. 18, 18,11,198,1,1
1.2,11,4,11,7,11,8,11,9,11.18, 11
Jt.11,12,11,2,12,3.12

20 DATH 4,12,5.12.6,12,7.12.32.13
12,5.13.6,13,7.132,4,14,7, 14,4
5,15,8,15,7, 15,4, 16,5, 18, 8,1
5,4,17.5,17,6.,17,7,17,8,17,
¥,17,4,18,5,18,6,18.7,13.,8
8,19,138,5,19.6,19,18,19,1
28,5,20.19,29,11,28,5,21,
»21,11.21.5,22,6,2

4

e
N Q0 =~y (N -
W e
o

)\

e o~
Tsiv =
NN~
NN~
N
NN
(LN
BN

N~
Ju¥N]
N W
M~ s
S R A |

A~ AT @s -

N~
N~
QN -

S NWU M= -~
= N .

OO d=W
AT ~ ~

Pl LU, N U RN

LIS~ v v &= - =

R N
S v M
S~y
Wl < NG~

(YUY R R &

Q- - AN T Nd e
Q- @~

e Ry e . R e kR N Y PG PN
S R R T P R R R DT P B
=Ry R

HE L

~J

=R]

s
o
AR

Ao s I~ (100~
e s =S Re ~ (TN~ ~

B R BT

S~ AN S - (AN -

W - =~
Q- -

SA@ms AN IS A@Qs -
PRy

Wwe- (A s (e

Siv o

OEMOs AR M= U INS ~ -~ s

MmN ~- s W~

OEms =M = oS Wy -
-~

SN s o =N s s AT
~ Mo

NG = =~ =

N~

197

Chapter 15 Animation

Once the two frames have been PSET (a very slow job, but atleast it only
has to be done once!) you can GET them into arrays F1 and F2, and PCLS
away the figures you just PSET ready for the animated sequence.

v DIM F1(535:0
128 GETCS5.80
139 GETC55.9
148 PLCLS

M Fz:i58)
270.F1,0G
(BB.272.F2,0G

The simplest sequence is to PSET each array in turn so that the figure
runs on the spot half way down the left hand side of the screen.

123 PUTCH, 180 -0 %+25. 127 1, F 1. PSE
T

288 PUTC A, 188 -0 x+25,1275.F 2. PSE
T

239 GOTO 129

If you now arrange to increment X in a FOR...NEXT loop he runs
across the screen from left to right. Notice that each frameis shown at each
X step before X is updated. Figure 15.4 shows the two frames frozen
alternately at a number of screen positions.

168 FOR %=1 TO 233 STEP 5
B HEXT =
238 GOTD 149

Figure 15.4 Frozen sprinters

ERrEELELE

He moves very smoothly and quite rapidly across the screen, but what
happensifthereis a visible background behind him? Add in some horizon-
tal lines to give a test background and RUN again.

158 FOR LI=1 TO 38 STEP S:LIMECH
SLI=255,L1 0 PSET -HEAT LI

As you can see from Figure 15.5 the lines vanish as the man runs over
them, which is not much use in a real program. Now we could GET the
background just before we PUT the figure and then PUT the background
back when it moved on. We only GET the background once for both

199

Advanced Sound and Graphics for the Dragon Computer

frames as it is the original background we need to PUT back. If we just
recreate the background with PSET then the lines reappear (Figure 15.6)
but there s a lot of flashing and whilst each frame of the figure is shown
part of the lines are erased.

70 DIM F1¢28,:0IM F2(285:0IM BiGK
287

178 GETC ¥, @)-(%+235,27 5, BG. G

218 PUTCX,B)-(X+25,27 3, B5, PSET

Figure 15.5 Background erased

&

Figure 15.6 PUT, PSET figure over background

3

To get a smoother replacement of the background (Figure 15.7) we need
to make things a little more complicated, and apply some logical actions in
our PUT commands.

il

188 PUT(X.B,-(¥+25,272,F1,0R
198 PUTC ¥, 8)-(¥+25,27 3, B, AND
208 PUT(X,8)-(X+25,275,F2,0R
218 PUTC X, 8- X+25,27 1, B5. AND

Figure 15.7 The logical answer

==

First we PUT the first frame (F1) over the background (BG) with OR.
This gives background plus frame 1 as all points which are set in either
array OR screen are set. Now we PUT back the background (BG) with
AND so that only points which are common to both the current screen and
the original screen remain set. This produces the original position and we
canthen PUT the second frame (F2) with OR and then AND this with the

200

Chapter 15 Animation

background (BG) as for frame 1. Notice that it is essential to PUT the
background back between frames if you are to avoid problems with the
International Athletics Association over three-legged sprinters.

Flying high

The degree of realism in an animation depends on the accuracy of the
frames, but also on the number of frames in the sequence. As an example
Figures 15a—e show a series of four different pictures of a bird in flight.
The easiest way to produce such a series of related frames is to generate
them onthescreen grid system described earlier. The first picture shows the
wings in the highest position and when @ is pressed to transfer the finished
design to the top of the screen (Figure 15.8b) the grid lines are redrawn so
that the points blocked in now form a solid pattern. This feature makes it
simpler to construct the design of each subsequent frame as you can easily
modify the existing picture, but still see which parts have been changed.
‘When all the frames have been finished you can CSAVEM the top of the
screen and on reloading GET and PUT these designs without ever actually
thinking about which points you have PSET. Obviously that is a lot easier
than typing in long DATA statements, but it does mean that you will have
to copy our pictures onto the screen grid instead if you want this bird to f1y.
By this time you should be able to modify the sprinter program above to
GET and PUT the correct areas.

Figure 15.8 Flying high

201

Advanced Sound and Graphics for the Dragon Computer

Figure 15.8b
o
BEE]
o I
1
R
Figure 15.8¢
e
||| B
—-.,.—

Oasis

The only real disadvantages of GET and PUT animation are that you
cannot change thescale, colour or angle of your design. DRAW will allow
you to change thesefactors, but as it isslowerthan GET and PUT it is only
useful for some applications, and new designs are best produced on
graphics pages which are out of sight and then PCOPYed back to the cur-
rent screen. As an example we will look at producing an oasis in the desert
which gets bigger as you approach it.

202

Chapter 15 Animation

First we need to PCLEAR all eight graphics pages and PCLS the first
four to yellow (colour 2) to represent the sand.

19 PCLERR 2:PMODE 3.1:SCREEM 1.9
:PCLS2

Figure 15.8d

W T

-

Figure 15.8¢

o Ty e

- - et
|

[I -]

203

Advanced Sound and Graphics for the Dragon Computer

Figure 15.8f
T e

The quickest way to set the top half of the screen to blue for the sky is to
change the PMODE to 1 (which only uses two pages) and PCLS to 3.
Remember that as there is no SCREEN command you are still looking at
PMODE 3. Now we change the PMODE back to 3 and make a painted
circle for the sun.

29 PMODE 1,1:PCLS 3:PMODE 3,1:CI
RCLEC233,:28 5, 29, 2: PRIMT(238,385,
2.2

In each picture the oasis is built up on a hidden screen on pages 5 to 8.
PCLS 2 in PMODE 3 sets this to yellow and then PCLS 3 in PMODE 1
makes the top half blue.
S8 PMODE 3,5:PCLSZ:PMIDE 1.5:PCL
;3:PMODE 3.5

The actual oasis is produced with DRAW and PAINT.

43 A%$="C1LGERZFHLFHGEC4" : W$="BM1
25, 118C3BM-8, +BFR1BEL13BM+5, +8" :

PT 4USXAS; BI+4, +SU42A% . BM-2, +
4U HE ;"
€8 DRAW W$:PAIMTC(128,111 5 3,3:0R

AW PT$

To seetheoasisonthescreen we must PCOPY thelast threepagesofthe
hidden screen onto the last three pages of the screen display. As the top
page does not change there is no point copying this.

204

Chapter 15 Animation

708 PCOPY € TO 2:PCOPY 7 TO 3:PCO
PY & TO 4

80 SOUNDCS¥55,1

99 GOTO 99

If you RUN this you will see a minute oasis in the far distance (Figure
15.9), but if you add an incrementing scale factor (S) it will increase rapidly
in size.

30 FOR S=4 TO 43 STEP 4:DRAW"S"+
STREC S 1
28 HEXT §

Figure 15.9a Oasis (scaled down animation)

205

Advanced Sound and Graphics for the Dragon Computer

Figure 15.9b

T

Figure 15.9¢

111

206

Chapter 15 Animation

Figure 15.9d

Figure 15.9¢

207

Advanced Sound and Graphics for the Dragon Computer

Figure 15.9f

Figure 15.9g

Chapter 15 Animation

Figure 15.9h

Figure 15.9i

209

Advanced Sound and Graphics for the Dragon Computer

Figure 15.9j

Figure 15.9k

210

Chapter 15 Animation

Figure 15.91

Of course mirages are very common in the desert so you shouldn’t be too
surprised when your head starts to spin and the oasis vanishes into the
distance again.

100 FOR A= TO 3:PMODE 3.1:PCLSZ:

PMOCE 1,5:PCLS3:PMOCE 3,5:0RAW

A"+STRECH »+"S"+STRE 48-C 164A 7)+W

$+PT$

110 PCOPY & TO 2:PCOPY 7 TO 3:PC

OPY 8 TO 4:MHEXT A

120 FOR H=255 TO 1 STEP -S5:SOUND
M, 1:HEAT H

130 RUM

211

20
10
Go
S©
§o
20
go

PE{?K IN ¢
Bl ok AP
ccCs
x = O
PR J 100, X 5
A - perc(«@5)
Ashi- (o
16 P (’S’D'— 285 ywav 4 @0
1€ %ﬁf A= cnah (V7m0 3 x
1 0% = cond(n) e x- M-

o 2D

CHAPTER 16
Sound Synthesis

Although you are never going to get your Dragon to sound like a real
synthesiser it is possible to demonstrate some of their features with this
program. (It is generally known as the “‘MOG”’ synthesiser, as the results
are rather feline at times).

Repeating keyboard sound

Although we showed you earlier how to PLAY notesdirectly from the key-
board with INKEYS$ this method had two main disadvantages. The first is
the fact that INKEY$ does not autorepeat so you have to lift your finger
from the key before you can sound a note again. The second problem is
that the keys for CDE F G A B are not in very logical places for playing
music! As you have already seen making keys autorepeat is easy if you
PEEK at location 135 which contains the ASCII code of the last key
pressed. If we convert this to its character representation which is CHR$
we can PLAY it and a loop will then sustain the note until the key is rel-
eased. (Notice that it is not a case of converting the number to a string with
STRS but of making the character with CHRS.)

If you try that routine you will find that it doesn’t work, although not
because the logic is wrong! First of all there is a problem with the key-
bounce of the ENTER key you used to RUN the program, and secondly
location 135 retains the code for the last key pressed. A preliminary pause
gets over the keybounce, and a PEEK at 337 will tell us if a key has been
pressed. Add these lines and keys A—G will autorepeat satisfactorily.

HEXT N

9 FOR H=1 TU 1
27»=255 THEM 118

78 IF PEEF:
199 GOTO 7B

213

Advanced Sound and Graphics for the Dragon Computer

The autorepeat is rather slow so change the default tempo setting to
speed things up. A value of around T50 gives a reasonabte effect.

S8 PLAY"TSE"

At the moment the note stops as soon as you release the key, butif you
jump back to 120 instead of 110 the last note will continue to be repeated
until you press another key.

198 GOTO 89

Reconfiguring the keyboard

Pressing an invalid key will still cause an FC ERROR but now that we can
repeat a note continuously, or alternatively permanently sustain it, let’s
think about rearranging the keyboard. If you compare the Dragon key
layout to a piano keyboard you can see that a more suitable set of keys to
use would be ZS XD CVGB HN J and M (Figure 16.1), where ZXCVB
N and M represent the white notes and S D G H and J the black notes. A
simple way to convert these keys to suitable notes using the INSTR fun-
ction. First we need to set up a string (K$) containing all the valid keys.
Next we need tocomparethe key pressed with K$. If the key pressed does
not correspond with a character in K$ then INSTR will give 0. If, on the
other hand,there is a match with a characterin K$ then INSTR will give a
numaber corresponding to the position of that character in the string.

WhenyouRUNthisyouwill find that the designated notes function as
the scale CDEFGAB and anyothernotesare ignored. But how was this
miracle achieved? Well to understand that you must go back to square one
again. Although sofar we have only considered PLAYing notes designated
by letters the Dragon also understands that the numbers 1 to 12 represent
the same notes (Figure 16.2). What we have done isarrange the notes inK$
in such an order that their position actually gives the corresponding
number.

A second octave

If we set up another string containing a different set of characters (Figure
16.3) we can use these to produce a higher octave if we add “0 + ”* before
the note, but we must then put *“0— "’ after the note to reset the octave.

214

Chapter 16 Sound Synthesis

"TG PUTP0EP R

29 L%=
5 3 THEM A$=STR®(C3:GOTO

STRCL.L$, A%
] THEM As="0+"+3TRSCC 2+
"0-": ELSE 28

Figure 16.1 Reconfiguration of keyboard

[112]=2[4]s[s[2[8]afo] [-Ekl
[lalu vlulilole
j s [enT]e

lset

Als
[

H K
sE1z [

2

@
[l T TTTTTI11D
@ LTI TTTTTTT T ol

oM ey 4R
olelelclalel |

Figure 16.2 Number representation of notes

rr} #g

1 2 24 5 87 8 3 10 11 12

Changing the tempo

We previously set the tempo to T50, but as this will not suit all tunes and
tastes why not build in a way of altering the tempo up and down whilst the
program is running. We can easily link T + and T — to the left and right
cursor keys so that theleft arrow slows the tempo and theright arrow raises
thetempo. It is most useful if you can actually hear immediately the result
of your action so we continue to PLAY A$ as the tempo changes. If you
press any key which is not designated as a note A$ is not updated and

215

‘Advanced Sound and Graphics for the Dragon Computer

Figure 16.3 Adding a second octave

therefore you will PLAY the old A$ and hence repeat the last note. When
yourelease the cursor key the tempo stays at the current value, so you can
use this facility to juggle until you are happy.

v IF H=9 THEW PLAY"T+":GOTO 138
ve IF A=8 THEM PLAY"T~":GOTO 18

9
1
5]

Itis possible to crash this routine if you really try hard and make T< 1 or
T> 255 but in practice it is unlikely you will reach these limits so we have
not bothered to include any limit checks.

Volume control

We could alter the volume in the same way asthe tempo, but as the range of
values is much smaller (1-31) it is much easier to reach anllegal value. It is
therefore better to use an external variable and add this in after STR$ con-
version.

38 V=1t

119 OH CCA=185~"A=9451+2 GOTD 21

9,12

138 STRE(Y)

282 31 THEMW Y=21:G0TO
1

219 V<1 THEH Y=1:G0TO 1

80:

4
=N

Chapter 16 Sound Synthesis

The volume is set half way at the start (V=15) and PLAY “V” +
STR$(V) is added in front of A$ in line 180. The keys are sorted by an ON
GOTO which looks for the codes for the up and down cursor keys. If nei-
ther the up arrow nor the down arrow is pressed then (A= 10)and (A =94)
are both untrue and (0)— (0) =0 so when 2 is added the result is 2, and the
program continues to 120. When the up cursor arrow is pressed (A= 10) is
true and (A= 94) is false so (- 1)—(0) +2 =1, which goes to 200 which
raises the volume unless V> 31. When the down arrow is pressed (A= 10) is
false and (A= 94) is true so (0)—(—1)+2=3 which goes to 210 which
lowers the volume unless V< 1.

Changing the octaves

As we have only defined our top octave as being one octave higher than our
low octave it is easy to change both octaves at once. The start octave is set at
3 in line 40 and line 120 looks for the codes for keys 1 to 4 (49—52) which
change the bottom octave to that number by PLAYing ‘“‘On”’.

43 0=3

123 UM (A=A48) GOTO 2293,233.,249.2
59

229 PLAY"01":GOTO 7B

239 PLAY" GOTO 7©

243 PLAY" GOTO 7©

259 PLAY"04":GOTO 7o

Envelopes

So far each repeat of each note sounds the same, although most musical
instruments actually have a characteristic sound ‘envelope’. In simple
terms this means that the rate at which the sound rises (attack) and falls
(decay) varies, and an approximation of envelope control can be achieved
by loops which play each new key with changing sequence of volumes.
Several examples are given below and in each case the routine described can
be used to replace line 180.

The simplest situation is a steady decay from maximum value.

189 FOR E=31 TO 1 STEP-1:PLAY"V"
STR$CE »+A%: HEXT E

Adjust the tempo until you get a reasonable effect and then alter the step
size to get more rapid decay.

189 FOR E=31 TO 1 STEP-Z:PLAY"V"
+5TRSCE J+A% : HEXT E

217

Advanced Sound and Graphics for the Dragon Computer
A less regular and more interesting effect can be produced by relating the
size of the step to the current volume.

180 FOR 31 TO 1 STEP -INT(H-S)
(PLAY"Y RHCE D+HA% :HEXT E

Control of attack can be introduced in thesameway by means of aloop
whichstepsup. Attack is normally faster than decay so up stepsare bigger
than down steps.

120 FOR E=1 TO 31 STEP 7:FLA/"Y"

+5TRS$(E »+A%:HEAT E:FOR E=31 TO 1
STEP (PLAY"W"+STRSCE +A% - HEXT
E

Of courseactual values can also be entered if desired to produce any
sequence.

188 PLAY W7V +F5+"V14" +H$+" V28" +R
$+UYI]HFS VG A V1O RS YD
PR VB RS YT S VE RS
WS YA e

You canalsouse the<,>, + and — signsin conjunction with V. This
rapid size and fall in volume produces rather a tremolo effect.
180 PLAY"VP"+AS+"Y>"+AS+" V" +A%+
UV HRSH Y RS YT RS

Finally we must point out that it is also possible to change the tempo,

note length, or octave to produce interesting sounds by the same methods,
although we’ll leave you to experiment with those yourselves.

218

CHAPTER 17
Graphic Music Editor

This graphic music editor gives an excellent demonstration of a combi-
nation of the sound and graphics capabilities of the Dragon as it allows you
to enter a piece of music, display it in standard musical notation on the
screen, and then play it (Figure 17.1).

Figure 17.1 Graphic music editor

EesE S s Ss =

E=S==cE=—rc==ars

E=cS==c====—==t

1
=i |
= —
lﬂalz —

‘When entering music we need to consider a number of different factors.
A single character on the manuscript tells us more than omne thing. The
shape of the character tells us the note length and the position on the stave
the actual note on the scale and octave. We also need to be able to include
sharps and flats. Two modes are provided. In EDIT mode the position is
indicated by a flashing cursorwhichis placed on the line of the stave which
corresponds to the current note on the scale. The cursor keys can be usedto
move this position in any direction. Up and down arrows change the note
on the scale, left and right arrows move from your position in the tune, and
shifted up and down arrows move you from line to line. The length of note
required is chosen by pressing keys 1 to 4. The spacebar is used to delete an
unwanted note.

219

Advanced Sound and Graphics for the Dragon Computer

The tune is stored in strings which are sliced to obtain the relevant infor-
mation for both sound and graphics. Each note is coded by a seven cha-
racter block.

eg L1203B—, L 402C’, or L 802D #

The first three characters define the note length, (eg L12, L 4 or L 8).
Note the space when L is less than 10. The next two characters specify the
octave, which can be 02 or 03. The sixth character is the note on the scale
(A—G) and the last character indicates whether the note is flat (—), natural
(') or sharp ().

If P is pressed in EDIT modethenPL AY mode is enteredand the tune
so far is PLAYed and displayed on the screen. A method of saving your
tune is also provided.

Setting up
The first stage of the setting up procedure involves clearing the screen to
black on green, clearing 10000 bytes for variables, and setting a number of
these. X controls the left/right position on a line, and Y the overall
up/down position on the screen, NO is the vertical position on the stave,
and LI is the current line of music (1—4)> . Four array elements are set up
as PAS$(n) to hold the notes entered on each line. Initially these are
completely filled by 255 single quote marks (') (CHR$(39). If you try to
PLAY ablank space you sometimes get an FC ERROR, but the system is
quite happytoPLAY CHR$(39), even though you can’t hear it. Filling the
stringin this way prevents problems when slicing.

19 GOTD €38
GQB F’HUDE 4 1:

H=1 TO 4:F
HEXT H

Graphic parts

We draw all the required graphics parts first and then GET and PUT them
(Figure 17.2). The picture for each graphic part must be stored in a separate
array by GET so a number of arrays are set up.

Vo3 DIMSECS, 185:DIMMLCE, 195: DIMM
208,185:DIMC103, 135:DIMC2, 3, 1§
DIMG1CE. 185:DIME20B, 185 DINS1
I / B.e3:0IN

Chapter 17

Figure 17.2 Graphic parts

O'JJ‘FPI'ﬁ

Il

[4

Graphic Music Editor

b

Now thesigns for the different notelengths can be drawn. All these have
a circle as a basic part so seven are drawn. This completes the drawing of

the first one, the semibreve.

718 FOR MW=28 TO 148 STEP 2B:CIRC
LECH, 280 2 HEXT M

The other six drawings represent only three actual lengths of note as the
position of the tail on these must vary according to their position on the

stave. First those with an ascending tail,

Y29 FOR H=48 TO 20 STEF 25:LIMEC
H+3, 28 o~ M43, 195, PSET - HEXT N

and then those with a descending tail.

H=133 TO 143 STEP 28:LIH
Bo-iH-3.380, PSET :HEXT M

738 FO
EvM-3

Now we need some black paint to distinguish the quaver and crotchet

from the minim,

B:PAINT(23, 29

743 PARINTCED,203,8,
b 28.,200,9,8:PAINT 14

2.8,8:PAINTCL
B,283,8,8
and finally we must dash the tail of the quaver.

¥58 LIMEC 23, 185-(822, 120, PSET:LIM
EC 137,38 2-C 142,27 1, PSET

A replacement section of the stave is drawn,

vEB FOR M=8 TO 1€ STEF 4:LIME(1S
BH+1S -0 178, 4150, PSET - HEXT H

followed by a bar line.

779 LIMEC 128, 20 - 128, 36 5, PSET

221

Advanced Sound and Graphics for the Dragon Computer
a sharp sign,

728 DRAW"EMZ228. 2454RZVZEN+2. +8.: 1
ZRZBEM+3, +2: LebzBn-2, +3 1)zl 2"

and a flat sign.

798 DRAW"BM228, 280 1BEZH3"

‘We now GET each of these into the appropriate array before passing to
the subroutine which draws the stave (this is placed as a subroutine as it is
also used by the play routine later).

GETY
GET: 37,1

GET:S7V,18
GETCFY, 18 12—

Drawing the stave

The graphics parts are erased and four sets of five lines are constructed
down the screen (Figure 17.3). The complex treble clef is easily DRAWn
after an appropriate Blank Move to set the position.

928 PMODE 4,1:SCREEM1.8:PILS 1:0
LS 1:COLOR 8,1

938 FOR N=43 TO 158 STEP 48

943 FOR TO 15 STEP 4
958 LIMEC @, M+M -0 255, M+
958 HEXT M

PSET

978 LIMEC @, N - 255, H+15 0, PSET. B
928 DRAW"EM1B, "+STRE: H+22 2+ "RUZ5
E3R3FD451ZDF 2RED3"

998 HEAT H

1233 RETURN

222

Chapter 17 Graphic Music Editor
Figure 17.3 The stave

Ol

= =

T

= =]

= i

e I

=t]
|
=
|

ot }

= —

=t |

== = |

1

1

=i |

= =

| |

= — |

On RETURN we jump back to the program proper in line 60.

Cursor and keycheck

INKEY$ is read into A$ and then we GET a square of the screen around
coordinates X,Y into CU and immediately PUT it back with PRESET.
Thisinverts the screen display in that area. After a short delay CU is PUT
back with PSET to recreate the original display. If no key is pressed this
flashing cursor sequence is repeated. If a key is pressed a check is made to
see if the current position is too far to the left (X< 40) or right (X> 240).

€3 As=IHKE’S
+50, 0 G 5 ’
CLl, PRESET :FOR M=1 TO SB:HEXT M:P
UTCH=5, =5 0=C#+5.Y+5 0, CULPSET : IF

A%="" THEW €3 ELSE IF X<48 OR ¥
w243 THEM GOTO 2B
Note lengths
If the position is valid then the VALue of the key pressed is taken. Only
number keys have a VALue so this separates the number keys from other
keys. Keys 1to 4 are used toindicate notelengths from semibreve to quaver
and only these will branch in the ON GOTO to the lines which draw the
characters.

c

=VALCAS5:0M A GOTO 218, 228,

ra

223

Advanced Sound and Graphics for the Dragon Computer

The semibreve is easily dealt with as it looks the same no matter where it
appears on the stave. Note that the array is PUT. . . ,AND rather than OR
to produce superimposition as the screen display is inverted.

218 PUTC =3, W=2 =0 X+3, " +3 0, SB. AN
D:GO0TO 258

For the other note lengths the current note position on the scale must be
checked to determine if the tail should go up or down. If you have not
changed the cursor position then the note position (NO)will still be 7.

28 IF M7 THEM PUTCX=3,'Y-18 -1
2430 ML AND: GOTD 258: ELSE PU
CA=3,=30-CA+2, ¢ +18 1, M2, AMC: GOT
0 258

,HHD GOTO dJU ELJE PU
I=CAS 180, 02, AMD GOT

047 THEM PUTC #=3.%=18 =
SULLAMD:G0TD 258:ELSE PU
30 = 8. 32, AMD: GOT

Adding to the strings

Once the screen display has been updated an ON GOSUB related to the
note (NO) on the scale sets NOS to the correct octave and note format for
PLAYing. On RETURN PLS$ is built up by adding ‘‘L”’ to four times the
VALue of the key pressed (A*4) and NOS.

2
2 J+NIJ$ GOsSUB 4UU .\'.‘A+;U I.:lJTIJ 28
HO%="02C" " : RETURN
HO%="020D" " :RETURHM
HO$="02E" " : RETURH
HO%="02F " " : RETURM
NU!S—"U 25’ " RETURM

NOS="035 ;
HO$="03E" " : RETURN

Chapter 17 Graphic Music Editor

[

F‘.E TURH

The subroutine at 400 is now called. This inserts the current string (PL$)
into the total string (PA$(LI)). XS is calculated from the current screen
position and defines the breakpoint betweentwo notes. I and SF are used if
PLS$ is a sharp or flat (see later).

488 AS=CCCA-283,28 087 1+ PRECLI D
=LEFTS: PH$C LI 5, SF +PLE+MICECP
FA$C LT 5, #5+8, LENC PR®ECLT 3 -4 5 RETU
RH

Finally the screen position is updated (X =X+ 20) and the program
loops back to line 20.

Limit tests

After each key press checks are made to ensure that the new cursor position
is within limits, and XA (distance of current move) is reset to zero.

28 IF A+¥A<48 THEM ¥=K-4AA ELSE #

Other keys
If a key which is not a number in the range 1 to 4is pressed then a series of
other routines may be called.

Cursor keys

Logic tests convert left/right cursor key movement into increases in XA (X
axis position), and up/down cursor key movement into changes in NO
(note position on current line).

If the note position falls outside limits it is reset to the limit and then the
overall Y coordinate is calculated from the current line (LI) and note (NO).

95 IF M1 THEH HO=HO+1
138 IF HO>14 THEM HO=MHD-1
119 W=CLI%485+22-0HO¥2)
225

Advanced Sound and Graphics for the Dragon Com puter

‘“B”’ = bar line
If ““B”’ is pressed a bar line is inserted. This is purely decorative and is not
added to the string.

125 IF F$="E" THEW FLIT
4 9= =15, LI44D 3+ 16, B

Shifted cursor

Shifted up and down cursor keys produce a movement from line to line,
provided the limits are not exceeded. The start position is reset to the left
hand end, and the overall Y coordinate updated.

=31 AN LI<4 THEW LI=LI+

R CHOF2
143 IF THEMW LI=LI-
1 =g CHOEZ 8

< spacebar> = delete

Pressing the space bar PUTS the spare section of stave with PSET over the
note to be deleted, thus removing it from the screen. At the same time the
old noteis deleted from PA$(LI) by replacing it with a series of CHR$(39).

“#” = sharp

The hash sign is used to indicate a sharp and this is PUT...,PSET rather
than AND to make it clearer. The hash sign appears to the left of the cur-
rent cursor position and as SF is setto 1 and I to 7 the hash sign is added to
the note to the left of the current cursor position, replacing the trailing

CHR$(39) in the seven unit block.

168 IF Ag="#" THEH PU

M=t .F:ET-PL
GUSLE 433 SF=0: 1=
D 1]

The minus sign indicates a flat and operates in the same way.

1ve IF H&="-" THEH FUTY
43 .

226

Chapter 17 Graphic Music Editor

“P” —.play
“P” leads to the PLAY routine, which first calls the subroutine at 920
which draws the blank manuscript.

THEW GCIsUE 418
413 LOSLIE S20

Eachlineis considered in turn, with thestart position (X2)beingfirstset
to coordinate 40.
428 FOR PL=1 TO 4:42=48

The string is sliced from position 6 (seventh character) to the end in
blocks of seven, and each block is PLAYed.
438 FOR #1=6 TO 255 STEP 7
443 PLAYMIDSC PR%CPL Y. X1.7)

The end of the actual notes on a line is detected by the presence of two

consecutive blocks of CHR$(39).

438 IF MID$CPRA%CPL 3, %1,
‘e THEM FL=FL+1 El F
458 IF FL»2 THEM HWEXT PL:RETURH

To recreate the graphics the stringsegment must be decoded. First we
must extract the last but one character as NOS.

478 MHO$=MIDS PAECPL 3, 4147, 13

NOS$ is compared against the scale of notes in VN§$ with INSTR to set
N1 to the number of the note on the scale. The actual Y1 position can now
be calculated.

438 VYHE="CDEFGAB" =IMSTRC 1, YHS
SHOE D 1=CPLE4B »+22-C H142)

Octave can only be 2 or 3 so we only need a check for 3 in position fiveto
know whether to move Y1 up for the higher octave.

433 IF MID$CPRASCPLD,X1+€.15="3"
THEHW *Y1="1-14

227

Advanced Sound and Graphics for the Dragon CQmputer

The length of the note is extracted as the second and third characters
(LNS$) and this is converted to a number by taking the VALue.

500 LNE=MID$ PR%. PL), X1+2,20
518 LH=VHAL(LH%)

Now we divide the actual note length by 4 to GOTO the routines to
actually PUT the notes. These are very similar to those described before.

528 ON CLHs/43 GOTOD 548,558,550, 5
e

538 COTO 528

548 PLIT X2-3,Y1-20-0 X243, Y1430, 5
B, AND: GOTD 529

55u IF Nl'?_THEN PUTiV'

(GOTO 529
IF H1<7 THEM PUT:X2-3,%1-19
3 C1,AND: GOTD 589 E
12-3,01-30-(X2+3,Y1+18),02
JHNL‘ lalJTLl 529

78 IF M1<7 THEM PUTY ®2-3,%1-182
-l%4+8;(1+d);91;HHD=GUTD 589 ELS
E PLITCX2-3,1-30=(4248, (1+19, 12
»AMD:GOTD S80

If the last character is *“ #” or “‘— "’ then the sign is PUT in the appro-
priate position.

589 IF MID®CPA$CPL I, Z1+3, 1 0="#"
THEM PUTCXZ2~11,%1-33-CX2-4,71+3)
»SHLPSET

598 IF MIDSCPASCPL J, X1+3,1 ="
THEHM PUTC#2-7,1-7-CA2-3,Y1+43 2,
FL,AND

The left/right coordinate (X2) is incremented by 20 and the next note
taken.
600 ¥2=V2+20: HEAT ¥1,PL:RETURH
“8” = save/load

““S”” leads to a save/load routine which allows you to SAVE the strings on
tape as ASCII files and reLOAD them to recreate both sound and graphics.
After SAVEing the cursor is returned to the top of the hi-res screen.

228

Chapter 17 Graphic Music Editor

139 IF RA$="3" THEM 518

519 CLS:PRIMTEZZ22,""; : IMPUT"DO ¥
OU WISH TO LOAD OF SAVE":Z2%

528 IF LEFT$: 2%, 1] THEHM £EB

ELSE IF LEFT®(Z%. 5" THEMW SC
FEEM1.3: GOTO 28

533 INMPUT"FILE MAME";HA%:OFPEM "D
" =1, HA%

549 FOR LI=1 TO 4:PRINTH#-1,PR%CL
15 HEXT LI: LLU E#-1

558 LI=1:"¢=42:¥=48:HI=7:COTO 29

After LOADing the cursor position is set to the top and the PLAY
routine automatically called.

558 IMPUT"FILE MAME";MA%: OPEH"I"
o #-1,HA%

578 FOR LI=1 TO 4:IMPUT#-1.PR%CL
T2 :HERT LI:CLOSE#-1

5 LI=1:"=42 k=41 HO=7:R$="P":
[u] 128

229

CHAPTER 18
Beyond BASIC

Although you can do a great many things with BASIC programs there will
always remain certain things that you would like to do but which you find
impossible. Often you feel that you cannot move things fast enough, or
that your programs take up too much memory. The solution to these prob-
lems lies deeper inside your Dragon where you must get to grips directly
with its internal workings. There is not enough room to go into detail here
on this complex subject but we will give you some examples and pointers to
show what is possible, whet your appetite, and perhaps start you on your
way to exploring this fascinating area.

Before we start you must clearly understand how your Dragon carries
out your commands. First you must realise that the 6809 microprocessor at
its heart can only really understand instructions if these are given to it as
numbers, and that the BASIC interpreter converts programs written in
pseudo-English into these numbers so that they can be acted upon. As
BASICisaninterpreted language your lines are re-read every timethepro-
gram passes through them. If youcanalter these lines whilst the program is
running then you will be able to change the program itself.

You have already met the commands PEEK and POKE in other con-
texts, but now let us look at another way these can be very useful. In case
you have forgotten let us remind you that PEEK tells you what is in a par-
ticular memory location and POKE will put any number from 0 to 255 into
amemory location.

Poking into your program

You will remember that when we developed the program to write text on
the hi-res screen using GET and PUT we had to type in separate DIM, GET
and PUT tines for each character as the BASIC interpreter will not allow
you torename the array you want to use. That is very tedious, of course,
but in addition all thoselines eat up memory. There must be some solution
tothis problem so why not do a little PEEKing around in the memory loca-
tionswhich contain your BASIC program so you can see how thisis stored.
We will position the key lines DIM, GET and PUT at the end of the pro-
gram and add RETURN to each so that we can call them as subroutines.

231

Advanced Sound and Graphics for the Dragon Computer

193 DIM CZ01@0: RETURM

119 GETCG1,EL 0-CG2.EZ 0. CE, G RETU
FH

128 FUTCPLL L 0=CF2 L
TURH

CE HOT:RE

Finding the end

As these are the last lines in the program we know that they must be just
before the end of the program, and if we look inlocations 27 and 28 we can
find out wherethat is, as these two bytes always contain the address of the
end of thecurrent program. We will define this position asthe variable EN.

13 EH=PEEK? 27 »32T5+PEEK:

To look at our program we must PEEK at the locations before this
marker. The following line will look at the last 69 memory locations of the
program and will print out memory location address (N), negative offset
from the end marker (EN-N), number in thatlocation (PEEK(N)), and the
character corresponding to that number (CHR$(PEEK(N)).

] FDF‘ H=CEN-523TO EM: PP‘INT H;
CEM~M PEEK(H ;"
HRE PEEKCH) :HMEXT M

If you RUN this now you will see four changing columns which are
something like those shown in Table 18.1. (In addition to the characters
shown on the print-out in our table some graphics characters will also
appear at the right of the screen. These are not acceptable to our printer
and it has therefore ignored them). If you find that the actual location
numbers differ from those printed then you have probably got a different
number of spaces in your program, or you have previously used PCLEAR
toset a different number of graphics pages from the default of 4. This does
not really matter for the moment. Look closely at the last column of our
table, LIST the program on the screen, and compare the characters with
the last three lines of the program. You should be able to recognise parts of
it. For example locations 7842 and 7843 contain C and Z, and 7838 and
7839 contain U and 2. Much of the rest of the output appears as garbage
because the system uses certain numbers to define BASIC commands
instead of storing each character of the command word. The key points as
far as we are concerned are those that name the array to be used. If you
look at all the locations listed you will find that these appear as follows:

232

Chapter 18 Beyond BASIC

7787 C
77188 Z (in the DIM)
7817 C
7818 Z (in the PUT)
7842 C
7843 Z (in the GET)
Table 18.1
PEEKING AT THE END OF PROGRAMS
address offset PEEK CHR$(PEEK)
145
5]
5]
1va 12
5]
12 #
1518 i
41 s
£ F
45 1
44 ;
5 Lt
21 1
=1} 3
12 T
12 {
17 F
15 2
15 ,
14 1l
13 2
12 b
11 44 ,
18 % 5
3 =% 4
= £5)
7 44 ’
& 132 F
b1 S 5
4 145
3 5]
2 %}
1 5]

233

Advanced Sound and Graphics for the Dragon Computer

3 E
[i
Be Y
56 ‘
S 43 1
54 43 @
£3 41 ¥
62 55
£1 145
£ 3
59 30
55 144
57 3
56 1y
5 179 &
54 40 ‘
55 71 d
52 49 1
51 44 P
Su] E
439 439 1
43 41 3
47 196 T
. 45 4 ‘
B 45 71 G
1 44 S0 2
2 43 44 ;
3 42 £9 E
4 41 S0 2
5 41 41 3
£ 39 44 ,
7) & o
5 37 a9 z
9 36 44 .
20 5 71 G
21 S35 :

Changing the array names
Now try POKING location 7843 with different numbers (as direct
commands) and then LISTing line 120

POKE 7343,65

D
w

234

Chapter 18 Beyond BASIC

128 PUTCP1,UL=CP2,1J25,CA.HOT:RE
TURM

Look closely and you will see that the array name used in the PUT
command is now CA instead of CZ! (65 is the ASCII code for A).

POKE 7843,88
will produce:

128 PUTCPL, UL 5-(P2.U2, CBE.HOT : RE
TURH

You can also POKE the same place by defining it in terms of a negative
offset from the end of program marker. The offset for 7843 is — 9.

POKE EW-9.E57
gives

2@ PUTCPLL UL D=0 P2, U250, CC, HOT : RE
TURH

The offsets for Z in the DIM and GET lines are —67 and —37,
respectively.

The absolute value of the end of program marker will changeif you alter
the length of the program but if you define the position you want to POKE
as an offset from this then you will always produce the correct result pro-
vided that you do not alter the program after your key point. This is the
reason we put these lines at the end of the program. No matter how much
you add before them the offset from the end will always be correct. Even if
you RENUM to change the program line numbers it will work. Another
very important factor is that the POKE can also be made from within the
program. Add this line, RUN and LIST.

33 POKE EM~9.58

gives

128 PUTCPL, UL 5=0P2.U2 5 CD, HOT : RE
TURH

Sonow wecanreachtheparts other methods cannot reach and modify
our program as it is actually running how can we apply this in practice?

235

Advanced Sound and Graphics for the Dragon Computer

What can I POKE

POKEing around in your program is not a particularly dangerous
occupation. The worst that can happen is that the system crashes and you
lose your program, but perhaps you’d better CSAVE acopy now if you like
to POKE at random. The most straightforward way to apply this POKE
idea to dealing with GETting and PUTting characters would seem to be to
use the actual character in the array name. Unfortunately life is not quite
that simple as many of the characters have other meanings when in a pro-
gram line. For example the colon (:) is used to separate commands.

Think back to what is normally a valid name for a variable and you will
know which characters you can and cannot use. One or two characters are
allowed, the first one must be an upper case (capital) letter, and the second
canbe aletter or anumber. If you useonly onecharacter todefinethearray
then you are limited to 26 dif ferent arrays. On the other hand with aletter
followed by a number you can have 26*10 = 260 arrays different arrays,
and with two letters another 26*26 = 676 which gives a total so large that
there should be nodifficulty in making enough arrays for allthe characters
you might need (even if you do nothing but design characters for the rest of
your life!)

Rather than getting into discussions on the best way to code each cha-
racter we will just give you the listing below which contains a straight-
forward modification which changes the array name for the characters A
to Z, as an example, and we leave the rest to you. The reduction in the
memoryrequirementis dramatic asthe whole program cannow befittedin
well under IK. Don’t forget that you can also POKE the ‘action’ of the
PUT command in the same way to give global changes in the way the array
affects the screen.

1 EN=PEEK (27 X
13 PMODE 4.1
OF3. 1 CLOADM
15 FOR N=42 TO 5]‘ F’IJI‘E EH-5.H: G0
NEMT H

=5 TO ‘-"U F’UIE EH

51000

SuM: G0

2 ME

C%=INE E'|‘$ PUTC, Y 1= YA 4B
SNOT PUTC A, o= '/€+FL. WHE N BLLND

Chapter 18 Beyond BASIC

T:IF C$="" THEM 518 ELZE IF Ceé="
@' THEM 1528 ELSE = (C$o:IF C

<42 OR O “55 OR Cr31
THEH 1388
28 POKE EN-59,C:GOSUB 1899

538 IF FL=1 THEHM PUTC .M =CX+R, W
+B+1 2,BL.HOT
B ¥=¥+5: IF A:XE THEM ¥=1:%=+T
: IF E THEM 1518
558 G0TO JIU

1518

15218

1538

5]

1548

5]

1558

1568

1578

1589

1538

1698 GOTO 518

1828 IF FL=1 THEW FL=B:GO0TO 518
ELSE FL=1:G0TOS18

1399 = MR, Y4B DL CT, PSET
RETURN

1985 GETE X5 2=0 “+A, Y4B 5 02, G:RET
URH

2939 DIM CE2C1 2 :RETURM
Hidden graphics modes

The Video Display Generator chip used in the Dragon is a general purpose
device which is also capable of producing extra display modes which are
not available through Microsoft Colour BASIC. However to be able to
work in these modes you must take direct control of the VDG, which
means life gets complicated and you must learn how the various modes
operate.

Semigraphics

The low-resolution graphics display available through BASIC is actually
semigraphics mode 4, in which each character position of the text display is
divided into 4 elements (Figure 18.1), and each character position takes up

237

Advanced Sound and Graphics for the Dragon Computer

one byte. There are three partsto thisbyte. The firstbit is 1, whichindicates
that this is a semigraphics mode, the next three bits code for the colour, and
the last four bits indicate whether each element is on or off. Since the
colour code can only be set for the wholecharacterpositionyou cannot set
different elements to different colours.

Figure 18.1
ZEMIGRAPHI MODE 4
Lz L&
L1 Lo

]:]E2[c1|tD[L3]L2]L1[LDJ

COLOUR OH OFF

This mode is set up automatically by the BASIC interpreter when you are
using the text screen but the other semigraphics modes can only be
obtained by POKEing to certain addresses. Even when these different
modes have been set up in this way you can only alter the screen display by
POKEing to screen memory (or using machine code) and in practice this
means that these modes are rather fiddly to use. Details of the necessary
POKE:s are given in the examples below.

Semigraphics mode 6

Semigraphics mode 6 divides each character position into six elements and
uses the same amount of memory as semigraphics mode 4 (Figure 18.2).
The first bit is set to indicate semigraphics, and only the second bit is used
tocode forcolour, so that only two colours can be indicated. The rest of the
bits indicate on/off status and only one colour can be used in each cha-
racterposition. The colour set is either blue/red (if bit 4 of 65314 is set) or
magenta/orange (if bit4 of 65314 is 0). This mode is not particularly useful

238

Chapter 18 Beyond BASIC

but the following demonstration shows it filling the screen with each of the
graphicscharactersin turn.

11 0+ 15
55473, 13 POE

PETUFH

Figure 18.2
FEMIGRAFPHICE MODE &

Tralaslialii] o]

COLOUR HH 0OFF

Semigraphics modes 8, 12 and 24

Semigraphics modes 8, 12 and 24 are more interesting. They give you con-
trol of smaller elements (64*64, 64*96, and 64* 192 pixels, respectively) and
allow you to use all eight colours in the same character position. They also
include normal text in the display (something which of course you cannot
normally do in the BASIC hi-res modes). In each case the character posi-
tion is divided into ‘N/2’ rows of two elements (Figures 18.3—18.5) and

239

Advanced Sound and Graphics for the Dragon Computer

any of the eight colours can be specified for each row. However as one byte
is used to code for each row more memory is needed (2—6K). In all these
bytes the first bit is set to 1, the next three used to code for colour, and the
last four to indicate on/off status. The following demonstration sets pixels
to random colours in each mode to show the degrees of resolution availa-
ble.

644?5 1: POk
1313

39 POKE u4?d;u POKE £5474.3: POk
E £5477,1:H=35: GOSLE 199

43 POKE £5472,3:POKE £5475., 1:POK
E 65477, 1:H=121:G05UB 199

Sy GOTO S8

193 FOR LH=1 TO H

119 FOR CL=1 TO 21

125 POKE 1924+LH¥32+CL, RHDN 127 3+

: L, LH
293 CLS3-PCLS 1:RETURHM

Figure 18.3
SEMNIGRAFHICT MODE @2

L&

L4

L2

el COLLT (N1

ol il colls 114

C2]CI| €0 Lz | L2
2] C [sifn] L1 (]
colouR OH OFF

240

Chapter 18 Beyond BASIC

Figure 18.4
TEMIGRAPHICE MODE 12

L1 L1090
LS L&
L7 L&
LS L4
L1 Lo

(] ()

OO
ICO|C(O|1OD
T

—|r
(SIS

A OO0

o

5t
El
LS
1

al iHololo|cio)
= | ool

LeuFR OH OFF

CLS8, PMODE 4,1 and PCLSI are included as a convenient way of
wiping thetext screen and the first four pages of video memory clear before
starting, and between modes, as thereis no built-in screen-clearing routine
for these non-implemented modes. If you use these modes you can have.
eight colours in ‘hi-resolution’ but you will need to do a lot of planning to
get your display correct without all those useful graphics commands
available in Microsoft Color BASIC.

Including text

Thenormal text is generated within the VDG when a number less than 128
is received but to put this text on thescreenin these special modes you must
send the character code repeatedly. The number of repeats is the same as
the number of the semigraphics mode, with a horizontal slice of the cha-
racter being sent at each repeat. If you add these modifications each mode
will be labelled. The numbers are inverted as the screen codes are not the
same as the ASCII codes (as explained earlier).

241

Advanced Sound and Graphics for the Dragon Computer

Figure 18.5

SENIGEAFHICET MODE 24

@
B

2 (FOR H=1 TLI LEMCM$ o M=RS
CCMIGS: ME. M, 1 0
219 FOR CH=1 TO R#1& STEFP 32

242

2 L2232
£3 L2D
CTa LT&
Li7? L1k
1S Lig
LS [N
£ C1o
.
ke C4
] La
(% Ch
[=0 KNl 23]L22
fleoleil caliol [Lan
Ilcalci| co[Liafite
(lcalc COlL1I?IL1TE
1l Cc2lei[Co[Lis[Lt+
C2| L el R]
Caliti] o [B
C2lC1] L0 L3 [L%
c2l 0 -0 o LE
colci] co LS [L+
| tz|ci] co L3 | Lo
talcilco L1 LG
colour OH OFF

Chapter 18 Beyond BASIC:

228 POKE ST+CH+CO.HM
239 MEAT CH:CO=C0+1:MEXT N
248 SOUMD 1,16

True graphics
Three extra true graphics modes can also be obtained with suitable POKEs.

64 x 64 four colour mode (1K video memory)
64 x 128 two colour mode (1K video memory)
64 x 128 four colour mode (2K video memory)

These are all of lower resolution than the PMODEs available through
BASIC and as they are really of interest only we have omitted details on
setting them up.

Calling machine code subroutines

Machine code is the ultimate language of the microprocessor and even if
you do not go to the extreme of writing programs entirely in machine code
you can use subroutines written in it to improve your programs. We cannot
even attempt to go into the details of 6809 code here, as that would take at
least one whole book on its own (if you think that BASIC is complicated
then you will soonrealise that machine code is rather like ancient Sumarian
hieroglyphics by comparison). We will therefore just explain how you can
use machine code subroutines in your BASIC programs, and give a few
examples of sound and graphics routines. All data is given in hexadecimal
base. That may make things look even more complicated but if you want to
get into machine code you are going to have to get used to it sometime, so
you niight as well start now!

CLEARing space

First you need to reserve room in memory to store the machine code you
writeso that it cannot be obliterated by BASIC programs or variables. This
is done with the CLEAR command, which is also used to reserve string
space for BASIC programs. To reserve space for machine code a second
parameter must be added, which limits the highest address that BASIC can
use.

Thus:

19 CLEAR 2619
reserves 200 bytes for strings and:
18 CLERR 299, 4HEwa8

243

Advanced Sound and Graphics for the Dragon Computer

reserves 200 bytes for strings and the area above address &H6000 for
machine code routines.

Entering machine code routines

If you are going to do much work with machine code then you should invest
in an editor/assembler but in the meantime this little program will allow
you to enter code quite painlessly. Thereisno need to type ‘&H’ to indicate
hexadecimal numbers as this is added automatically. (Assembler listings
are also included for the fortunate).

1088 CLS:PRIMT"START RADLRES
NPUT ST%:ST="AL: "&H"+ST%
1818 PRINT"START ENTERIMG DATA"

1826 PRINT HEW$(S IWPUT A%
1638 ¥E S RH" RS
1840 ST=ST

1950 uuTu 1628

One major difficulty with machine code isthat there are no error- trap-
ping routines built in, so if you make a mistake entering the data the whole
thing can quite easily crash.

Simple sounds

Sound is turned on by loading a byte to address &HFF23, and the tone
sounded depends on the value loaded into &HFF20. The duration depends
on atime delay which you build into the program. This simpleroutine just
makes a single sound. When you have entered the numbers in the second
column of Table 18.2 from address &H6000 with the loader program
above you call it by EXECuting fromthe start address. Youshould be able
todefineup to 10 separate machine code routines on the Dragon withinthe
USR n function but, due to a bug in the ROM, USR 0 is always called no
matter what number you specify. Where no parameters need to be passed
to the routine this causes no problem, as you can simply EXECute the
starting address of the routine to call it.

188 EXEC4HS000

If you RUNthisBASIC program it will make a single sound and then
report back with OK. If you add 30 GOTO 20 it will repeat until you press
BREAK. Where you need to be able to pass parameters to a machine code
routine the simplest thing is to EXECute it after POKEing values into it.
The tone value used is stored at address &H6009, and the duration asa two
byte number at addresses &H6006 and &H6007, so try experimenting by
POKEingin different values.

2144

Chapter 18 Beyond BASIC

eg
283 POKE &HEBBT, 4HAF

EMBLE FROM=5885 TO=5815
2F LOH #3F

STH $FF23
LDY #D0BFF
LOE #5F
STE $FF2B
IMCE

EME SH9H
LERY =1.%
BNE 5083
RTS

If youaretoolazyto think of valuesthentry

28 POKE &HEBBY . RHO: 2.HFF 3

although we warn you that it will sound a bit like morse code!
If you add

I FORE %HEOB3, RHOC &HFF)

it will sound a little more like the orchestra tuning up.

Saving your routines

The area of memory reserved for machine code is not saved by a normal
BASIC program CSAVE so you must use CSAVEM and take into account
the address and length of the program. For example this first routine can be
saved by:

CSAVEM " zound" , &HEBBD, $HEB14, 4H14

Sound effects

Machine code allows you to make more interesting sounds as these can
change tone very rapidly. For example the listing in Table 18.3 produces a
‘phaser’ type sound. Itisentered from &H6100. The BASIC routine below
calls it whenever a key is pressed, but POKEs different values into it
according to whether A or B is pressed to produce two different sounds.

245

Advanced Sound and Graphics for the Dragon Computer

29 IF PEEK 2"

I=PEEK(1325)

29 IF I=65 THEM POKEXH6m31.FF EL
SE IF I=66 THEM POKE#H6D31.3F EL
SE 2B
43 EXEC&H6139
58 G0TO 29
Table 18.3
DISASSEMBLE FROM=6193 TO=6113
6133 86 2F LOH OJF
6132 BY FF 2z STH $FF22
6195 1IF 89 TFR H.,B
61837 F7 FF 21 STB sFFze
619A SC INCB
6188 26 FA BHE €107
615D 4C IHCA
61BE 2R 91 BPL 6111
6113 4F CLRA
6111 28 F2 BRA 6155
Sound tables

It is often useful to be able to set up a sequence of tones to be played, and
these are best organised in a ‘sound table’ in memory. The program in
Table18.4starts from&H6200and readstonebytes from Table 18.5 which
starts at &H6250 and continues to sound these in sequence until it finds a
zero. Use the loader programto enter some values into this table and listen
to the effect (you will have all the space up to &H64FF available). To speed
things up POKE a smaller value into &H620B.

Inverting the text screen

Normal and inverted characters on the text screen can easily be inter-
converted with the listing in Table 18.6 which makes an EOR (exclusive
OR) of each character on the text screen with &H40. The BASIC program
below will invert the screen every time a key is pressed thus alternating bet-
ween the two forms.

23 1$=IMKEY$: IF I$="" THEH 21
23 EXECAHE5H9
43 GOTO 29

246

Chapter 18 Beyond BASIC

Table 18.4

DISASSEMBLE FROM=6200 TO=5223
5208 86 3F LA

#3F
52uz2 BY FF 23 STH $FF23
52215 19 BE 62 58 LLY #6258
5289 SE vw 39 LD¥ #9989
52uC ES HY LDB e
52BE 1 B9 CHMPB #o0
5218 27 13 BEQ 6225
6212 1F 98 TFR. B.A
6214 F7 FF 2v STB $FFza
6217 SC INCB
5218 26 FH BHE 6214
621A IF 89 TFR A.B
521C 39 1F LEAX -1.%
521E 26 F4 BHE €214
c2ze 28 EV BRA 62083
6zzz 39 RTS
Table 18.5

SOUMD TRBLE

£256 25
5257 83
5258 FF
5259 ES
[2e25) [505]

No doubt you will be impressed by the speed of this routine which is
virtually instantaneous. Ifyouwanttoinvert only partof the screen change
the two byte start and end address values in &H6501/&H6502 and
&H650A/&650B, respectively. For example if you POKE &H650A with
&HOS5 then only the top half of the screen will invert.

247

Advanced Sound and Graphics for the Dragon Computer

Table 18.6

CISASSEMBLE FROM=6509 TU 650F

6500 SE v4 Y #0400
6503 HE B84 LDH XS]
€585 88 40 EORA #4090
65087 A7 809 STH IRy
6593 8C W6 Vo CHP¥Y #0600
€58C 25 FS BCS 6503
€5BE 33 RTS

Partial PCLS

The routine in Table 18.7 allows you to fill certain bytes of the hi-res
graphics screens with any number. The main use is in clearing parts of the
screen or setting up a particular pattern. The routine places the values in
&H6601 and &H6603 into consecutive bytes of the screen. This is particu-
larly fast as it is done in one movement by treating the 8 bit A and B reg-
isters as a single 16 bit D register. The start address of the areato be filled is
at &H6605/&H6606 and the end address at &H660A/&H660B.

2@ PMOCE 3.1:
38 EXEC%HE6600

;CREEM 1.9

49 GOTO 49
Table 18.7

SS 6 =66k
%é%gbvsmagE FROM=6608 EH SG”EU
6682 L6 S LDB #55
6604 SE BS (5%} LO¥ #0600
6607 ED 81 STD RS
6683 8C 17 FF CHP: #17FF
666C 25 F3 BCS 6607
660E 33 RTS

If zeros are POKEd into &H6601 and &H6603 the top three quarters of
the screen will be cleared as for PCLS 1, and i f &HFF is POKEd the ef fect
will be as PCLS 4. If &H6601 is POKEd with zero and &H6603 with &HFF
the result is red and green stripes. Experiment with other values remember-
ing that each screen point is controlled by a pair of bits in PMODE 3.

248

Scrolling

Chapter 18 Beyond BASIC

Although the text screen scrolls upwards automatically when the PRINT
position reaches the bottom no scrolling of the hi-res screen is provided in
Color Basic. The listing in Table 18.8 provides upward scrolling of the
screen, and the routine in Table 18.9 provides a similar downward effect.
The overall effect depends on the values POKEd into tables stored at
&H6740 and &H6840, respectively. These values can be stored as DATA
and POKEd in when required. The example below gives smooth control
over the up and down motion of a floating circle with the up and down

cursor keys.

Table 18.8

DIbHSbEMBLE FRUM'S?BB Tl=6?16
6700 FC 67 40

6703
6707
670A
6708
6700
670F
6710
6712
6713
6715

18
FE
4C
RE
AF
SA
26
4A
26
39

Table 18.9

g;ggsgamg&EgsRom=s?5u

6753
6757
675A
€758
673D
675F
6760
6762
6763
6765

BE 67 42
67 44

A1
C1

F9
Fé6

BE 67 92
67 94

A3
c3

F9
Fé

LDY
LDU
INCA
LDX
STX
DECB
BNE
DECA
BNE
RTS

$6740
$6742
$6744

SV
Ut

6708
6708

0878870

LDU
INCAH
LDX
STX
DECB
BNE
DECH
BNE
RTS

$6792
$6794

==Y
»==U

675B
675B

249

Advanced Sound and Graphics for the Dragon Computer

18 DATH ©B2,FO,85.19.085, 80, 82, Fa,

vB,EF.,0E,FF

280 FOR M=¢HET49 TO LHETYS:RERAD A
$:POKE M, VALC "&H"+A% 1 NEV M

38 FOR MH=%HE250 TO &HE5255 E DA
%:POKE M, VALY Hs

48 PMODE 9.1

58 CIRCLE! 122,

&8 IF PEEK(THEH &&1

79 IF PEEK(125)5=94 THEN EXEC%HE?

[1%]

20 IF PEEKY 1353=18 THEM EXEC%EHS2
[51%]

99 GUTO &

250

Otbher titles from Sunshine

THE WORKING SPECTRUM
David Lawrence 0 946408 00 9 £5.95

THE WORKING DRAGON 32
David Lawrence 0 946408 01 7 £5.95

THE WORKING COMMODORE 64
David Lawrence 0 946408 02 5 £5.95

DRAGON 32 GAMES MASTER
Keith Brain/Steven Brain 0946408 03 03 £5.95

FUNCTIONAL FORTH for the BBC Computer
Boris Allan 0946408 04 1 £5.95

COMMODORE 64 MACHINE CODE MASTER
David Lawrence 0 946408 05 X £6.95

SPECTRUM ADVENTURES
Tony Bridge and Roy Carnell 0946408 07 6 £5.95

THE DRAGON TRAINER
Brian Lloyd 0946408 09 2 £5.95

Sunshine also publishes

POPULAR COMPUTING WEEKLY

The first weekly magazine for home computer users. Each copy contains
Top 10 charts of the best-selling software and books and up-to-the-minute
details of the latest games. Other features in the magazine include regular
hardware and software reviews, programming hints, computer swap,
adventure corner and pages of listings for the Spectrum, Dragon, BBC,
Vic 20 and 64, ZX 81 and other popularmicros. Only 35p a week, a year’s
subscription costs £19.95 (£9.98 for six months) in the UK and £37%40
(£18.70 for six months) overseas.

DRAGON USER

The monthly magazine for all users of Dragon microcomputers. Each issue
contains reviews of software and peripherals, programming advice for
beginners and advanced users, program listings, a technical advisory
service and all the latest news related to the Dragon. A year’s subscription
(12 issues) costs £8.00 in the UK and £14.00 overseas.

For further information contact:
Sunshine

12-13 Little Newport Street
London WC2R 3LD

01-734 3454

Printed in England by Commercial ColourP cess, London E.7.

Advanced Sound and Graphics uses a carefully
structured approach to show you how to develop
routines in your own Dragon programs.

All the major aspects of the sound and graphics
capabilities are covered in detail and are fully
illustrated. The book takes you from first principles
through to bar charts, maps, 3-D projections,
movement, animation, direct drawing, screen
saving and printing and many other features.
Complex sound effects are examined in detail
including keyboard sound synthesis, the graphic
display of music and the integration of sound and
graphics.

In addition to dealing with the operation and
applications of the BASIC commands the book
explains the internal organisation of the sound and
graphics facilities. It also shows you how to use
machine code routines to improve your programs.

Keith and Steven Brain are a father and son team and
have already published the best selling book Dragon
32 Games Master. They are both regular contributors
to Popular Computing Weekly and the monthly
magazine Dragon User.

SUNSHINE

15BN 0 946408 06 8 £5.95 net

	1
	lc-p001
	lc-p002
	lc-p003
	lc-p005
	lc-p006
	lc-p007
	lc-p009
	lc-p010
	lc-p011
	lc-p012
	lc-p013
	lc-p014
	lc-p015
	lc-p016
	lc-p017
	lc-p018
	lc-p019
	lc-p020
	lc-p021
	lc-p022
	lc-p023
	lc-p024
	lc-p025
	lc-p027
	lc-p028
	lc-p029
	lc-p030
	lc-p031
	lc-p032
	lc-p033
	lc-p034
	lc-p035
	lc-p036
	lc-p037
	lc-p038
	lc-p039
	lc-p040
	lc-p041
	lc-p042
	lc-p043
	lc-p044
	lc-p045
	lc-p046
	lc-p047
	lc-p048
	lc-p049
	lc-p050
	lc-p051
	lc-p052
	lc-p053
	lc-p054
	lc-p055
	lc-p056
	lc-p057
	lc-p058
	lc-p059
	lc-p060
	lc-p061
	lc-p062
	lc-p063
	lc-p064
	lc-p065
	lc-p067
	lc-p068
	lc-p069
	lc-p070
	lc-p071
	lc-p072
	lc-p073
	lc-p074
	lc-p075
	lc-p076
	lc-p077
	lc-p078
	lc-p079
	lc-p080
	lc-p081
	lc-p082
	lc-p083
	lc-p084
	lc-p085
	lc-p087
	lc-p088
	lc-p089
	lc-p090
	lc-p091
	lc-p092
	lc-p093
	lc-p094
	lc-p095
	lc-p096
	lc-p097
	lc-p098
	lc-p099
	lc-p100
	lc-p101
	lc-p102
	lc-p103
	lc-p104
	lc-p105
	lc-p106
	lc-p107
	lc-p108
	lc-p109
	lc-p110
	lc-p111
	lc-p112
	lc-p113
	lc-p114
	lc-p115
	lc-p116
	lc-p117
	lc-p118
	lc-p119
	lc-p120
	lc-p121
	lc-p122
	lc-p123
	lc-p124
	lc-p125
	lc-p126
	lc-p127
	lc-p128
	lc-p129
	lc-p130
	lc-p131
	lc-p132
	lc-p133
	lc-p134
	lc-p135
	lc-p136
	lc-p137
	lc-p138
	lc-p139
	lc-p141
	lc-p142
	lc-p143
	lc-p144
	lc-p145
	lc-p146
	lc-p147
	lc-p148
	lc-p149
	lc-p150
	lc-p151
	lc-p153
	lc-p154
	lc-p155
	lc-p156
	lc-p157
	lc-p158
	lc-p159
	lc-p160
	lc-p161
	lc-p162
	lc-p163
	lc-p164
	lc-p165
	lc-p166
	lc-p167
	lc-p168
	lc-p169
	lc-p170
	lc-p171
	lc-p172
	lc-p173
	lc-p174
	lc-p175
	lc-p176
	lc-p177
	lc-p178
	lc-p179
	lc-p180
	lc-p181
	lc-p182
	lc-p183
	lc-p184
	lc-p185
	lc-p186
	lc-p187
	lc-p188
	lc-p189
	lc-p190
	lc-p191
	lc-p192
	lc-p193
	lc-p195
	lc-p196
	lc-p197
	lc-p198
	lc-p199
	lc-p200
	lc-p201
	lc-p202
	lc-p203
	lc-p204
	lc-p205
	lc-p206
	lc-p207
	lc-p208
	lc-p209
	lc-p210
	lc-p211
	lc-p212
	lc-p213
	lc-p214
	lc-p215
	lc-p216
	lc-p217
	lc-p218
	lc-p219
	lc-p220
	lc-p221
	lc-p222
	lc-p223
	lc-p224
	lc-p225
	lc-p226
	lc-p227
	lc-p228
	lc-p229
	lc-p231
	lc-p232
	lc-p233
	lc-p234
	lc-p235
	lc-p236
	lc-p237
	lc-p238
	lc-p239
	lc-p240
	lc-p241
	lc-p242
	lc-p243
	lc-p244
	lc-p245
	lc-p246
	lc-p247
	lc-p248
	lc-p249
	lc-p250
	lc-p251
	lc-p252
	z

